
GeoNetwork Developer Manual
Release 2.6.4

GeoNetwork

May 24, 2011

Contents

1 Software development 3
1.1 System Requirements . 3
1.2 Tools . 4
1.3 Check out source code . 4
1.4 Build GeoNetwork . 4
1.5 Creating the installer . 5
1.6 Eclipse setup . 6

2 Harvesting 11
2.1 Structure . 11
2.2 Data storage . 13
2.3 Guidelines . 13

3 Metadata Exchange Format v1.1 15
3.1 Introduction . 15
3.2 File format . 15
3.3 The info.xml file . 16

4 XML Services 19
4.1 Calling specifications . 19
4.2 Login and logout services . 22
4.3 Group services . 24
4.4 User services . 29
4.5 Metadata services . 39
4.6 System configuration . 63
4.7 General services . 66
4.8 File download services . 72
4.9 Harvesting services . 74
4.10 Schema information . 84
4.11 Relations . 86
4.12 MEF services . 88
4.13 CSW service . 89
4.14 Java development with XML services . 96

i

5 Settings hierarchy 105
5.1 Introduction . 105
5.2 The system hierarchy . 105
5.3 Harvesting nodes . 107

ii

GeoNetwork Developer Manual, Release 2.6.4

Welcome to the GeoNetwork Developer Manual v2.6.4. The manual is for those who want to help with
the development process, including source code, software releasing, and other administrative work.

Other documents:

GeoNetwork User Manual

GeoNetwork Developer Manual (PDF)

Contents 1

GeoNetwork Developer Manual, Release 2.6.4

2 Contents

CHAPTER 1

Software development

1.1 System Requirements

GeoNetwork is a Java application that runs as a servlet so the Java Runtime Environment (JRE) must
be installed in order to run it. You can get the JRE from the following address http://java.sun.com and
you have to download the Java 5 Standard Edition (SE). GeoNetwork won’t run with Java 1.4 and Java 6
has some problems with it so we recommend to use Java 5. Being written in Java, GeoNetwork can run
on any platform that supports Java, so it can run on Windows, Linux and Mac OSX. For the latter one,
make sure to use version 10.4 (Tiger) or newer. Version 10.3 (Panther) has only Java 1.4 so it cannot run
GeoNetwork.

Next, you need a servlet container. GeoNetwork comes with an embedded one (Jetty) which is fast
and well suited for most applications. If you need a stronger one, you can install Tomcat from the
Apache Software Foundation (http://tomcat.apache.org). It provides load balance, fault tolerance and
other corporate needed stuff. If you work for an organisation, it is probable that you already have it up
and running. The tested version is 5.5 but GeoNetwork should work with all other versions.

Regarding storage, you need a Database Management System (DBMS) like Oracle, MySQL, Postgresql
and so on. GeoNetwork comes with an embedded one (McKoi) which is used by default during instal-
lation. This DBMS can be used for small or desktop installations, where the speed is not an issue. You
can use this DBMS for several thousands of metadata. If you manage more than 10.000 metadata it is
better to use a professional, stand alone DBMS. In this case, using a separate DBMS also frees up some
memory for the application.

GeoNetwork does not require a strong machine to run. A good performance can be obtained even with
128 Mb of RAM. The suggested amount is 512 Mb. For the hard disk space, you have to consider the
space required for the application itself (about 40 Mb) and the space required for data maps, which can
require 50 GB or more. A simple disk of 250 GB should be OK. Maybe you can choose a fast one to
reduce backup time but GeoNetwork itself does not speed up on a faster disk. You also need some space
for the search index which is located in WEB-INF/lucene. Even with a lot of metadata the index is
small so usually 10-20 Mb of space is enough.

The software is run in different ways depending on the servlet container you are using:

• Tomcat - You can use the manager web application to start/stop GeoNetwork. You can also use the
startup.* and shutdown.* scripts located into Tomcat’s bin folder (.* means .sh or .bat depending
on your OS) but this way you restart all applications you are running, not only GeoNetwork. After
installation and before running GeoNetwork you must link it to Tomcat.

3

http://java.sun.com
http://tomcat.apache.org

GeoNetwork Developer Manual, Release 2.6.4

• Jetty - If you use the provided container you can use the scripts into GeoNetwork’s bin folder.
The scripts are start-geonetwork.* and stop-geonetwork.* and you must be inside the bin folder
to run them. You can use these scripts just after installation.

1.2 Tools

The following tools are required to be installed to setup a development environment for GeoNetwork:

• Java - Developing with GeoNetwork requires a Java Development Kit (JDK) 1.5 or greater.

• Maven - GeoNetwork uses Maven to manage the build process and the dependencies. Once is
installed, you should have the mvn command in your path (on Windows systems, you have to
open a shell to check).

• Subversion - GeoNetwork source code is stored and versioned in a subversion repository. De-
pending on your operating system a variety of subversion clients are avalaible. Check in
http://subversion.tigris.org/ for some alternatives.

• Ant - GeoNetwork uses Ant to build the installer. Version 1.6.5 works but any other recent version
should be OK. Once installed, you should have the ant command in your path (on Windows
systems, you have to open a shell to check).

• Sphinx - To create the GeoNetwork documentation in a nice format Sphinx is used.

1.3 Check out source code

Check out the source code from trunk from the GeoNetwork subversion repository to develop using the
latest development code:

$ svn co https://geonetwork.svn.sourceforge.net/svnroot/geonetwork/trunk trunk

or from a stable branch for versions less likely to change often:

$ svn co https://geonetwork.svn.sourceforge.net/svnroot/geonetwork/branches/2.4.x branch24

1.4 Build GeoNetwork

Once you checked out the code from subversion repository, go inside the GeoNetwork’s root folder and
execute the maven build command:

$ mvn clean install

If the build is succesful you’ll get an output like:

[INFO]
[INFO] --
[INFO] Reactor Summary:
[INFO] --
[INFO] GeoNetwork opensource SUCCESS [1.825s]
[INFO] Caching xslt module SUCCESS [1.579s]
[INFO] Jeeves modules .. SUCCESS [1.140s]
[INFO] Oaipmh modules .. SUCCESS [0.477s]

4 Chapter 1. Software development

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://maven.apache.org/
http://subversion.tigris.org/
http://ant.apache.org/
http://sphinx.pocoo.org/

GeoNetwork Developer Manual, Release 2.6.4

[INFO] ArcSDE module (dummy-api) SUCCESS [0.503s]
[INFO] GeoNetwork Web module SUCCESS [31.758s]
[INFO] GeoServer module SUCCESS [16.510s]
[INFO] Gast module ... SUCCESS [24.961s]
[INFO] --
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 1 minute 19 seconds
[INFO] Finished at: Tue Aug 03 16:49:15 CEST 2010
[INFO] Final Memory: 79M/123M
[INFO] --

and your local maven repository should contain the GeoNetwork artifacts created
($HOME/.m2/repository/org/geonetwork-opensource).

Note: Many Maven build options are available. Please refer to the maven documentation for any other
options, Maven: The Complete Reference

For instance, you would like to use following options :

-- Skip test
$ mvn install -Dmaven.test.skip=true

-- Offline use
$ mvn install -o

Please refer to the maven documentation for any other options, Maven: The Complete Reference

1.4.1 Run embedded jetty server

Maven comes with built-in support for Jetty via a plug-in.

To run GeoNetwork with embedded jetty server you have to change directory to the root of the web
module, and then execute the following maven command:

$ mvn jetty:run

After a moment, GeoNetwork should be accessible at: http://localhost:8080/geonetwork

1.4.2 Source code documentation

The GeoNetwork Java source code is based on Javadoc. Javadoc is a tool for generating API documen-
tation in HTML format from doc comments in source code. To see documentation generated by the
Javadoc tool, go to:

• GeoNetwork opensource Javadoc

1.5 Creating the installer

To run the build script that creates the installer you need the Ant tool. You can generate an installer by
running the ant command inside the installer directory:

1.5. Creating the installer 5

http://www.sonatype.com/books/mvnref-book/reference/public-book.html
http://www.sonatype.com/books/mvnref-book/reference/public-book.html
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin
http://localhost:8080/geonetwork

GeoNetwork Developer Manual, Release 2.6.4

$ ant

Buildfile: build.xml
setProperties:
...
BUILD SUCCESSFUL
Total time: 31 seconds

Both platform independent and Windows specific installers are generated by default.

Make sure you update version number and other relevant properties in the installer/build.xml file

You can also create an installer that includes a Java Runtime Environment (JRE) for Windows. This will
allow GeoNetwork to run on a compatible, embedded JRE and thus avoid error messages caused by JRE
incompatibilities on the PC.

Creating an installer with an embedded JRE requires you to first download and unzip the JRE in a folder
jre1.5.0_12 at the project root level. Refer to the installer-config-win-jre.xml file for exact configuration.

1.5.1 Packaging GeoNetwork using Maven

Using Maven, you have the ability to package GeoNetwork in two different ways :

• WAR files (geonetwork.war, geoserver.war)

• Binary ZIP package (with Jetty embedded)

The Assembly Plugin is used to create the packages using

$ mvn package assembly:assembly

The Assembly Plugin configuration is in the release module (See bin.xml and zip-war.xml).

1.6 Eclipse setup

1.6.1 Setting eclipse preferences

• M2_REPO Classpath Variable:

• Navigate to Java> Build Path> Classpath Variable

• Press New.. button

• In Name field enter M2_REPO

• In Path field enter the path to your .m2/repository_directory

• Example: “C:Documents and Settingsm.coudert.m2repository”

An alternative to set up this variable directly using maven could to run the following command into your
workspace directory

$ mvn -Declipse.workspace=. eclipse:add-maven-repo

• Generate Eclipse project files

6 Chapter 1. Software development

http://maven.apache.org/plugins/maven-assembly-plugin/

GeoNetwork Developer Manual, Release 2.6.4

To generate all the .classpath and .project files execute the following command at the project root direc-
tory

$ mvn eclipse:eclipse

1.6.2 Import source code

In order to import the source code, follow instructions below :

• Press File> Import Menu item

• In new dialog Select General> Existing Projects into Workspace

• Press Next

• In Select root directory field enter where your code is:

• example: C:devgeonetworktrunk

• Select All projects and Press Finish button.

1.6. Eclipse setup 7

GeoNetwork Developer Manual, Release 2.6.4

1.6.3 Setting m2eclipse plugin

To install m2eclipse, please refer to the following documentation.

Then click on File > Import > Maven > Check out Maven Projects From SCM Choose svn and
https://geonetwork.svn.sourceforge.net/svnroot/geonetwork/trunk as SCM URL options.

Note: It is also possible to import existing Maven projects using Maven (m2eclipse) import facilities
choosing the Existing Maven projects option.

1.6.4 Debugging into eclipse

• Tomcat Server :

TODO

8 Chapter 1. Software development

http://m2eclipse.sonatype.org/installing-m2eclipse.html
https://geonetwork.svn.sourceforge.net/svnroot/geonetwork/trunk

GeoNetwork Developer Manual, Release 2.6.4

• Remote debbuging :

• How do I configure Tomcat to support remote debugging?

• How do I remotely debug Tomcat using Eclipse?

1.6. Eclipse setup 9

http://wiki.apache.org/tomcat/FAQ/Developing#Q1
http://wiki.apache.org/tomcat/FAQ/Developing#Q2

GeoNetwork Developer Manual, Release 2.6.4

10 Chapter 1. Software development

CHAPTER 2

Harvesting

2.1 Structure

The harvesting capability is built around 3 areas: JavaScript code, Java code and XSL stylesheets (on
both the server and client side).

2.1.1 JavaScript code

This refers to the web interface. The code is located in the web/geonetwork/scripts/harvesting folder.
Here, there is a subfolder for each harvesting type plus some classes for the main page. These are:

1. harvester.js: This is an abstract class that must be implemented by harvesting types. It defines
some information retrieval methods (getType, getLabel, etc...) used to handle the harvesting type,
plus one getUpdateRequest method used to build the XML request to insert or update entries.

2. harvester-model.js: Another abstract class that must be implemented by harvesting types. When
creating the XML request, the only method substituteCommon takes care of adding common
information like privileges and categories taken from the user interface.

3. harvester-view.js: This is an important abstract class that must be implemented by harvesting
types. It takes care of many common aspects of the user interface. It provides methods to add
group’s privileges, to select categories, to check data for validity and to set and get common data
from the user interface.

4. harvesting.js: This is the main JavaScript file that takes care of everything. It starts all the sub-
modules, loads XML strings from the server and displays the main page that lists all harvesting
nodes.

5. model.js: Performs all XML requests to the server, handles errors and decode responses.

6. view.js: Handles all updates and changes on the main page.

7. util.js: just a couple of utility methods.

2.1.2 Java code

The harvesting package is located in web/src/main/java/org/fao/geonet/kernel/harvest.
Here too, there is one subfolder for each harvesting type. The most important classes for the implemen-

11

GeoNetwork Developer Manual, Release 2.6.4

tor are:

1. AbstractHarvester: This is the main class that a new harvesting type must extends. It takes care of
all aspects like adding, updating, removing, starting, stopping of harvesting nodes. Some abstract
methods must be implemented to properly tune the behaviour of a particular harvesting type.

2. AbstractParams: All harvesting parameters must be enclosed in a class that extends this abstract
one. Doing so, all common parameters can be transparently handled by this abstract class.

All others are small utility classes used by harvesting types.

2.1.3 XSL stylesheets

Stylesheets are spread in some folders and are used by both the JavaScript code and the server. The main
folder is located at web/src/webapp/xsl/harvesting. Here there are some general stylesheets,
plus one subfolder for each harvesting type. The general stylesheets are:

1. buttons.xsl: Defines all button present in the main page (activate, deactivate, run, remove, back,
add, refresh), buttons present in the “add new harvesting” page (back and add) and at the bottom
of the edit page (back and save).

2. client-error-tip.xsl: This stylesheet is used by the browser to build tooltips when an harvesting
error occurred. It will show the error class, the message and the stacktrace.

3. client-node-row.xsl: This is also used by the browser to add one row to the list of harvesting nodes
in the main page.

4. harvesting.xsl: This is the main stylesheet. It generates the HTML page of the main page and
includes all panels from all the harvesting nodes.

In each subfolder, there are usually 4 files:

1. xxx.xsl: This is the server stylesheets who builds all panels for editing the parameters. XXX is
the harvesting type. Usually, it has the following panels: site information, search criteria, options,
privileges and categories.

2. client-privil-row.xsl: This is used by the JavaScript code to add rows in the group’s privileges
panel.

3. client-result-tip.xsl: This is used by the JavaScript code (which inherits from harvester-view.js) to
show the tool tip when the harvesting has been successful.

4. client-search-row.xsl: Used in some harvesting types to generate the HTML for the search criteria
panel.

As you may have guessed, all client side stylesheets (those used by JavaScript code) start with the prefix
client-.

Another set of stylesheets are located in web/src/webapp/xsl/xml/harvesting and are used
by the xml.harvesting.get service. This service is used by the JavaScript code to retrieve all the nodes
the system is currently harvesting from. This implies that a stylesheet (one for each harvesting type)
must be provided to convert from the internal setting structure to an XML structure suitable to clients.

The last file to take into consideration contains all localised strings and is located at
web/src/webapp/loc/XX/xml/harvesting.xml (where XX refers to a language code). This
file is used by both JavaScript code and the server.

12 Chapter 2. Harvesting

GeoNetwork Developer Manual, Release 2.6.4

2.2 Data storage

Harvesting nodes are stored inside the Settings table. Further useful information can be found in the
chapter Harvesting.

The SourceNames table is used to keep track of the uuid/name couple when metadata get migrated to
different sites.

2.3 Guidelines

To add a new harvesting type, follow these steps:

1. Add the proper folder in web/src/webapp/scripts/harvesting, maybe copying an al-
ready existing one.

2. Edit the harvesting.js file to include the new type (edit both constructor and init methods).

3. Add the proper folder in web/src/webapp/xsl/harvesting (again, it is easy to copy
from an already existing one).

4. Edit the stylesheet web/src/webapp/xsl/harvesting/harvesting.xsl and add the
new type

5. Add the transformation stylesheet in web/src/webapp/xsl/xml/harvesting. Its name
must match the string used for the harvesting type.

6. Add the Java code in a package inside org.fao.geonet.kernel.harvest.harvester.

7. Add proper strings in web/src/webapp/loc/XX/xml/harvesting.xml.

Here is a list of steps to follow when adding a new harvesting type:

1. Every harvesting node (not type) must generate its UUID. This UUID is used to remove metadata
when the harvesting node is removed and to check if a metadata (which has another UUID) has
been already harvested by another node.

2. If a harvesting type supports multiple searches on a remote site, these must be done sequentially
and results merged.

3. Every harvesting type must save in the folder images/logos a GIF image whose name is the node’s
UUID. This image must be deleted when the harvesting node is removed. This is necessary to
propagate harvesting information to other GeoNetwork nodes.

4. When a harvesting node is removed, all collected metadata must be removed too.

5. During harvesting, take in mind that a metadata could have been removed just after being added
to the result list. In this case the metadata should be skipped and no exception raised.

6. The only settable privileges are: view, dynamic, featured. It does not make sense to use the others.

7. If a node raises an exception during harvesting, that node will be deactivated.

8. If a metadata already exists (its UUID exists) but belong to another node, it must not be updated
even if it has been changed. This way the harvesting will not conflict with the other one. As a side
effect, this prevent locally created metadata from being changed.

9. The harvesting engine does not store results on disk so they will get lost when the server will be
restarted.

2.2. Data storage 13

GeoNetwork Developer Manual, Release 2.6.4

10. When some harvesting parameters are changed, the new harvesting type must use them during the
next harvesting without requiring to reboot the server.

14 Chapter 2. Harvesting

CHAPTER 3

Metadata Exchange Format v1.1

3.1 Introduction

The metadata exchange format (MEF in short) is a special designed file format whose purpose is to
allow metadata exchange between different platforms. A metadata exported into this format can be
imported by any platform which is able to understand it. This format has been developed with GeoNet-
work in mind so the information it contains is mainly related to it. Nevertheless, it can be used as an
interoperability format between any platform.

This format has been designed with these needs in mind:

1. Export a metadata record for backup purposes

2. Import a metadata record from a previous backup

3. Import a metadata record from a different GeoNetwork version to allow a smooth migration from
one version to another.

All these operations regard the metadata and its related data as well.

In the paragraphs below, some terms should be intended as follows:

1. the term actor is used to indicate any system (application, service etc...) that operates on metadata.

2. the term reader will be used to indicate any actor that can import metadata from a MEF file.

3. the term writer will be used to indicate any actor that can generate a MEF file.

3.2 File format

A MEF file is simply a ZIP file which contains the following files:

1. metadata.xml: this file contains the metadata itself, in XML format. The text encoding of the
metadata is that one specified into the XML declaration.

2. info.xml: this is a special XML file which contains information related to the metadata but that
cannot be stored into it. Examples of such information are the creation date, the last change
date, privileges on the metadata and so on. Now this information is related to the GeoNetwork’s
architecture.

15

GeoNetwork Developer Manual, Release 2.6.4

3. public: this is a directory used to store the metadata thumbnails and other public files. There are
no restrictions on the images’ format but it is strongly recommended to use the portable network
graphics (PNG), the JPEG or the GIF formats.

4. private: this is a directory used to store all data (maps, shape files etc...) associated to the metadata.
Files in this directory are private in the sense that an authorisation is required to access them.
There are no restrictions on the file types that can be stored into this directory.

Any other file or directory present into the MEF file should be ignored by readers that don’t recognise
them. This allows actors to add custom extensions to the MEF file.

A MEF file can have empty public and private folders depending on the export format, which can be:

1. simple: both public and private are omitted.

2. partial: only public files are provided.

3. full: both public and private files are provided.

It is recommended to use the .mef extension when naming MEF files.

3.3 The info.xml file

This file contains general information about a metadata. It must have an info root element with a manda-
tory version attribute. This attribute must be in the X.Y form, where X represents the major version
and Y the minor one. The purpose of this attribute is to allow future changes of this format maintaining
compatibility with older readers. The policy behind the version is this:

1. A change to Y means a minor change. All existing elements in the previous version must be left
unchanged: only new elements or attributes may be added. A reader capable of reading version
X.Y is also capable of reading version X.Y’ with Y’>Y.

2. A change to X means a major change. Usually, a reader of version X.Y is not able to read version
X’.Y with X’>X.

The root element must have the following children:

1. general: a container for general information. It must have the following children:

(a) UUID: this is the universally unique identifier assigned to the metadata and must be a valid
UUID. This element is optional and, when omitted, the reader should generate one. A meta-
data without a UUID can be imported several times into the same system without breaking
uniqueness constraints. When missing, the reader should also generate the siteId value.

(b) createDate: This date indicates when the metadata was created.

(c) changeDate: This date keeps track of the most recent change to the metadata.

(d) siteId: This is an UUID that identifies the actor that created the metadata and must be a valid
UUID. When the UUID element is missing, this element should be missing too. If present,
it will be ignored.

(e) siteName: This is a human readable name for the actor that created the metadata. It must be
present only if the siteId is present.

(f) schema: Indicates the metadata’s schema. The value can be assigned as will but if the schema
is one of those describe below, that value must be used:

i. dublin-core: A metadata in the Dublin Core format as described in http://dublincore.org

16 Chapter 3. Metadata Exchange Format v1.1

http://dublincore.org

GeoNetwork Developer Manual, Release 2.6.4

ii. fgdc-std: A metadata in the Federal Geographic Data Committee.

iii. iso19115: A metadata in the ISO 19115 format

iv. iso19139: A metadata in the ISO 19115/2003 format for which the ISO19139 is the
XML encoding.

(g) format: Indicates the MEF export format. The element’s value must belong to the following
set: { simple, partial, full }.

(h) localId: This is an optional element. If present, indicates the id used locally by the sourceId
actor to store the metadata. Its purpose is just to allow the reuse of the same local id when
reimporting a metadata.

(i) isTemplate: A boolean field that indicates if this metadata is a template used to create new
ones. There is no real distinction between a real metadata and a template but some actors
use it to allow fast metadata creation. The value must be: { true, false }.

(j) rating: This is an optional element. If present, indicates the users’ rating of the metadata
ranging from 1 (a bad rating) to 5 (an excellent rating). The special value 0 means that the
metadata has not been rated yet. Can be used to sort search results.

(k) popularity: Another optional value. If present, indicates the popularity of the metadata. The
value must be positive and high values mean high popularity. The criteria used to set the
popularity is left to the writer. Its main purpose is to provide a metadata ordering during a
search.

2. categories: a container for categories associated to this metadata. A category is just a name, like
’audio-video’ that classifies the metadata to allow an easy search. Each category is specified by a
category element which must have a name attribute. This attribute is used to store the category’s
name. If there are no categories, the categories element will be empty.

3. privileges: a container for privileges associated to this metadata. Privileges are operations that a
group (which represents a set of users) can do on a metadata and are specified by a set of group
elements. Each one of these, has a mandatory name attribute to store the group’s name and a set of
operation elements used to store the operations allowed on the metadata. Each operation element
must have a name attribute which value must belong to the following set: { view, download, notify,
dynamic, featured }. If there are no groups or the actor does not have the concept of group, the
privileges element will be empty. A group element without any operation element must be ignored
by readers.

4. public: All metadata thumbnails (and any other public file) must be listed here. This container
contains a file element for each file. Mandatory attributes of this element are name, which repre-
sents the file’s name and changeDate, which contains the date of the latest change to the file. The
public element is optional but, if present, must contain all the files present in the metadata’s public
directory and any reader that imports these files must set the latest change date on these using the
provided ones. The purpose of this element is to provide more information in the case the MEF
format is used for metadata harvesting.

5. private: This element has the same purpose and structure of the public element but is related to
maps and all other private files.

Any other element or attribute should be ignored by readers that don’t understand them. This allows
actors to add custom attributes or subtrees to the XML.

3.3. The info.xml file 17

GeoNetwork Developer Manual, Release 2.6.4

3.3.1 Date format

Unless differently specified, all dates in this file must be in the ISO/8601 format. The pattern must be
YYYY-MM-DDTHH:mm:SS and the timezone should be the local one. Example of info file:

<info version="1.0">
<general>

<UUID>0619abc0-708b-eeda-8202-000d98959033</uuid>
<createDate>2006-12-11T10:33:21</createDate>
<changeDate>2006-12-14T08:44:43</changeDate>
<siteId>0619cc50-708b-11da-8202-000d9335906e</siteId>
<siteName>FAO main site</siteName>
<schema>iso19139</schema>
<format>full</format>
<localId>204</localId>
<isTemplate>false</isTemplate>

</general>
<categories>

<category name="maps"/>
<category name="datasets"/>

</categories>
<privileges>

<group name="editors">
<operation name="view"/>
<operation name="download"/>

</group>
</privileges>
<public>

<file name="small.png" changeDate="2006-10-07T13:44:32"/>
<file name="large.png" changeDate="2006-11-11T09:33:21"/>

</public>
<private>

<file name="map.zip" changeDate="2006-11-12T13:23:01"/>
</private>

</info>

18 Chapter 3. Metadata Exchange Format v1.1

CHAPTER 4

XML Services

4.1 Calling specifications

4.1.1 Calling XML services

GeoNetwork provides access to several internal structures through the use of XML services. These are
much like HTML addresses but return XML instead. As an example, consider the xml.info service: you
can use this service to get some system’s information without fancy styles and graphics. In GeoNetwork,
XML services have usually the xml. prefix in their address.

Request

Each service accepts a set of parameters, which must be embedded into the request. A service can be
called using different HTTP methods, depending on the structure of its request:

GET The parameters are sent using the URL address. On the server side, these parameters are grouped
into a flat XML document with one root and several simple children. A service can be called this way
only if the parameters it accepts are not structured. xml_request shows an example of such request and
the parameters encoded in XML. POST There are 3 variants of this method:

ENCODED The request has one of the following content types: application/x-www-form-urlencoded
or multipart/form-data. The first case is very common when sending web forms while the second one is
used to send binary data (usually files) to the server. In these cases, the parameters are not structured so
the rules of the GET method applies. Even if the second case could be used to send XML documents,
this possibility is not considered on the server side.

XML The content type is application/xml. This is the common case when the client is not a browser but
a specialised client. The request is a pure XML document in string form, encoded using the encoding
specified into the prologue of the XML document. Using this form, any type of request can be made
(structured or not) so any service can be called.

SOAP The content type is application/soap+xml. SOAP is a simple protocol used to access objects and
services using XML. Clients that use this protocol can embed XML requests into a SOAP structure. On
the server side, GeoNetwork will remove the SOAP structure and feed the content to the service. Its
response will be embedded again into a SOAP structure and sent back to the caller. It makes sense to
use this protocol if it is the only protocol understood by the client.

19

GeoNetwork Developer Manual, Release 2.6.4

A GET request to a XML service and its request encoding:

<request>
<hitsPerPage>10</hitsPerPage>
<any />

</request>

Response

The response of an XML service always has a content type of application/xml (the only exception are
those services which return binary data). The document encoding is the one specified into the document’s
prologue. Anyway, all GeoNetwork services return documents in the UTF-8 encoding.

On a GET request, the client can force a SOAP response adding the application/soap+xml content type
to the Accept header parameter.

4.1.2 Exception handling

A response document having an error root element means that the XML service raised an exception.
This can happen under several conditions: bad parameters, internal errors et cetera. In this cases the
returned XML document has the following structure:

• error: This is the root element of the document. It has a mandatory id attribute that represents an
identifier of the error from a common set. See error2_ids for a list of all id values.

– message: A message related to the error. It can be a short description about the error type or
it can contain some other information that completes the id code.

– class: The Java class of the raised error (name without package information).

– stack: The server’s stacktrace up to the point that generated the exception. It contains several
at children, one for each nested level. Useful for debugging purposes.

* at: Information about a nested level of called code. It has the following mandatory
attributes: class Java class of the called method. method Java called method. line Line,
inside the called method’s source code where there the method call of the next nested
level. file Source file where the class is defined.

– object: An optional container for parameters or other values that caused the exception. In
case a parameter is an XML object, this container will contain that object in XML form.

– request: A container for some useful information that can be needed to debug the service.

* language: Language used when the service was called.

* service: Name of the called service.

Summary of error ids:

20 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

id Meaning of message
element

Meaning of object element

error General message, human
readable

x

bad-format Reason x
bad-parameter Name of the parameter Parameter’s bad value
file-not-found x File’s name
file-upload-too-
big

x x

missing-
parameter

Name of the parameter XML container where the parameter should
have been present.

object-not-found x Object’s name
operation-
aborted

Reason of abort If present, the object that caused the abort

operation-not-
allowed

x x

resource-not-
found

x Resource’s name

service-not-
allowed

x Service’s name

service-not-
found

x Service’s name

user-login User login failed message User’s name
user-not-found x User’s id or name
metadata-not-
found

The requested metadata was
not found

Metadata’s id

mef_export_exception shows an example of exception generated by the mef.export service. The service
complains about a missing parameter, as you can see from the content of the id attribute. The object
element contains the xml request with an unknown test parameter while the mandatory UUID parameter
(as specified by the message element) is missing.

An example of generated exception:

<error>
<message>UUID</message>
<class>MissingParameterEx</class>
<stack>

<at class="jeeves.utils.Util" file="Util.java" line="66"
method="getParam"/>

<at class="org.fao.geonet.services.mef.Export" file="Export.java"
line="60" method="exec"/>

<at class="jeeves.server.dispatchers.ServiceInfo" file="ServiceInfo.java"
line="226" method="execService"/>

<at class="jeeves.server.dispatchers.ServiceInfo" file="ServiceInfo.java"
line="129" method="execServices"/>

<at class="jeeves.server.dispatchers.ServiceManager" file="ServiceManager.java"
line="370" method="dispatch"/>

</stack>
<object>

<request>
<asd>ee</asd>

</request>
</object>
<request>

4.1. Calling specifications 21

GeoNetwork Developer Manual, Release 2.6.4

<language>en</language>
<service>mef.export</service>

</request>
</error>

4.2 Login and logout services

4.2.1 Login services

GeoNetwork standard login (xml.user.login)

The xml.user.login service is used to authenticate the user in GeoNetwork, allowing using the Xml
services that require authentication. For example, the services to maintain group or user information.

Request

Parameters:

• username (mandatory): Login for the user to authenticate

• password (mandatory): Password for the user to authenticate

Login request example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.user.login

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<username>admin</username>
<password>admin</password>

</request>

Response

When user authentication is succesful the next response is received:

OK

Date: Mon, 01 Feb 2010 09:29:43 GMT
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: JSESSIONID=1xh3kpownhmjh;Path=/geonetwork
Content-Type: application/xml; charset=UTF-8
Pragma: no-cache
Cache-Control: no-cache
Expires: -1
Transfer-Encoding: chunked
Server: Jetty(6.1.14)

22 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

The authentication process sets JSESSIONID cookie with the authentication token that should be send
in the services that need authentication to be invoqued. Otherwise, a Service not allowed exception will
be returned by these services.

Errors

• Missing parameter (error id: missing-parameter), when mandatory parameters are not send.
Returned 400 HTTP code

• bad-parameter XXXX, when an empty username or password is provided. Returned 400 HTTP
code

• User login failed (error id: user-login), when login information is not valid. Returned 400 HTTP
code

Example returning User login failed exception:

<?xml version="1.0" encoding="UTF-8"?>
<error id="user-login">

<message>User login failed</message>
<class>UserLoginEx</class>
<stack>

<at class="org.fao.geonet.services.login.Login" file="Login.java" line="90" method="exec" />
<at class="jeeves.server.dispatchers.ServiceInfo" file="ServiceInfo.java" line="238" method="execService" />
<at class="jeeves.server.dispatchers.ServiceInfo" file="ServiceInfo.java" line="141" method="execServices" />
<at class="jeeves.server.dispatchers.ServiceManager" file="ServiceManager.java" line="377" method="dispatch" />
<at class="jeeves.server.JeevesEngine" file="JeevesEngine.java" line="621" method="dispatch" />
<at class="jeeves.server.sources.http.JeevesServlet" file="JeevesServlet.java" line="174" method="execute" />
<at class="jeeves.server.sources.http.JeevesServlet" file="JeevesServlet.java" line="99" method="doPost" />
<at class="javax.servlet.http.HttpServlet" file="HttpServlet.java" line="727" method="service" />
<at class="javax.servlet.http.HttpServlet" file="HttpServlet.java" line="820" method="service" />
<at class="org.mortbay.jetty.servlet.ServletHolder" file="ServletHolder.java" line="502" method="handle" />

</stack>
<object>admin2</object>
<request>

<language>en</language>
<service>user.login</service>

</request>
</error>

Shibboleth login (shib.user.login)

The shib.user.login service process the creadentials of a Shibboleth login.

To use this service the user previously should be authenticated to Shibboleth. If the authentication is
succesful, the HTTP headers will contain the user credentials.

When calling shib.user.login service in GeoNetwork, the Shibboleth credentials are then used to find or
create (if don’t exists) the user account in GeoNetwork.

GeoNetwork processes the next HTTP header parameters filled by Shibboleth authentication:

• system/shib/attrib/username

• system/shib/attrib/surname

• system/shib/attrib/firstname

4.2. Login and logout services 23

GeoNetwork Developer Manual, Release 2.6.4

• system/shib/attrib/profile: User profile. Values: Administrator, UserAdmin, Reviewer, Editor and
Guest

GeoNetwork checks if exists a user with the specified username in the users table, creating it if not
found.

4.2.2 Logout service

Logout (xml.user.logout)

The xml.user.logout service clears user authentication session, removing the JSESSIONID cookie.

Request

Parameters:

• None:This request requires no parameters, just it’s required sending the JSESSIONID cookie
value.

Logout request example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.user.logout

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request/>

Response

Logout response example:

<?xml version="1.0" encoding="UTF-8"?>
<ok />

4.3 Group services

4.3.1 Groups retrieving

Groups list (xml.group.list)

The xml.group.list service can be used to retrieve the user groups avalaible in GeoNetwork.

Requires authentication: No

24 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Request

Parameters:

• None

Group list request example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.group.list

Mime-type:
application/xml

Post request::
<?xml version="1.0" encoding="UTF-8"?>
<request />

Response

Here follows the structure of the response:

• record: This is the container for each group element returned

• id: Group identifier

• name: Human readable group name

• description: Group description

• email: Group email address

• label: This is just a container to hold the group names translated in the languages supported by
GeoNetwork. Each translated label it’s enclosed in a tag that identifies the language code

Group list response example:

<?xml version="1.0" encoding="UTF-8"?>
<response>

<record>
<id>2</id>
<name>sample</name>
<description />
<email />
<referrer />
<label>

<en>Sample group</en>
<fr>Sample group</fr>
<es>Sample group</es>
<de>Beispielgruppe</de>
<nl>Voorbeeldgroep</nl>

</label>
</record>
<record>

<id>3</id>
<name>RWS</name>
<description />
<email />

4.3. Group services 25

GeoNetwork Developer Manual, Release 2.6.4

<referrer />
<label>

<de>RWS</de>
<fr>RWS</fr>
<en>RWS</en>
<es>RWS</es>
<nl>RWS</nl>

</label>
</record>

</response>

Group information (group.get)

Retrieves group information. Non XML response.

4.3.2 Groups maintenance

Create/update a group (group.update)

The group.update service can be used to create new groups and update the information of an existing
group. Only users with Administrator profile can create/update groups.

Requires authentication: Yes

Request

Parameters:

• id: Group identifier to update. If not provided a new group it’s created with name, description and
email parameters provided.

• name: (mandatory) Name of the group

• description: Group description

• email: Mail address for the group

Group update request example:

Url:
http://localhost:8080/geonetwork/srv/en/group.update

Mime-type:
application/xml

Post request:
<request>

<id>2</id>
<name>sample</name>
<description>Demo group</description>
<email>group@mail.net</email>

</request>

26 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Response

If request it’s executed succesfully HTTP 200 status code it’s returned. If request fails an HTTP status
code error it’s returned and the response contains the XML document with the exception.

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

• Missing parameter (error id: missing-parameter), when mandatory parameters are not pro-
vided. Returned 400 HTTP code

• bad-parameter name, when name it’s empty. Returned 400 HTTP code

• ERROR: duplicate key violates unique constraint “groups_name_key”, when trying to create
a new group using an existing group name. Returned 500 HTTP code

Update label translations (xml.group.update)

The xml.group.update service can be used to update translations of a group name. Only users with
Administrator profile can update groups translations.

Requires authentication: Yes

Request

Parameters:

• group: Container for group information

• id: (mandatory) Group identifier to update

• label: (mandatory) This is just a container to hold the group names translated in the languages
supported by GeoNetwork. Each translated label it’s enclosed in a tag that identifies the language
code

Group label update request example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.group.update

Mime-type:
application/xml

Post request:
<request>

<group id="2">
<label>

<es>Grupo de ejemplo</es>
</label>

</group>
</request>

4.3. Group services 27

GeoNetwork Developer Manual, Release 2.6.4

Response

Group label update response example:

<?xml version="1.0" encoding="UTF-8"?>
<ok />

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

• Missing parameter (error id: missing-parameter), when mandatory parameters are not pro-
vided. Returned 400 HTTP code

Remove a group (group.remove)

The group.remove service can be used to remove an existing group. Only users with Administrator
profile can delete groups.

Requires authentification: Yes

Request

Parameters:

• id: (mandatory) Group identifier to delete

Group remove request example:

Url:
http://localhost:8080/geonetwork/srv/en/group.remove

Mime-type:
application/xml

Post request:
<request>

<id>2</id>
</request>

Response

If request it’s executed succesfully HTTP 200 status code it’s returned. If request fails an HTTP status
code error it’s returned and the response contains the XML document with the exception.

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

28 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

• Missing parameter (error id: missing-parameter), when mandatory parameters are not pro-
vided. Returned 400 HTTP code

• bad-parameter id, when id parameter it’s empty. Returned 400 HTTP code

4.4 User services

4.4.1 Users retrieving

Users list (xml.user.list)

The xml.user.list service can be used to retrieve the users defined in GeoNetwork.

Requires authentication: Yes

Request

Parameters:

• None

User list request example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.user.list

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request />

Response

Here follows the structure of the response:

• record: This is the container for each user element returned

• id: User identifier

• username: Login name for the user

• password: Password encoded in md5

• surname: User surname

• name: User name

• profile: User profile. The profiles defined in GeoNetwork are: Administrator, User administrator,
Content Reviewer, Editor, Registered user

• address: User physical address

• city: User address city

4.4. User services 29

GeoNetwork Developer Manual, Release 2.6.4

• state: User address state

• zip: User address zip

• country: User address country

• email: User email address

• organisation: User organisation/department

• kind: Kind of organisation

User list response example:

<?xml version="1.0" encoding="UTF-8"?>
<response>

<record>
<id>1</id>
<username>admin</username>
<password>d033e22ae348aeb566fc214aec3585c4da997</password>
<surname>admin</surname>
<name>admin</name>
<profile>Administrator</profile>
<address />
<city />
<state />
<zip />
<country />
<email />
<organisation />
<kind />

</record>
<record>

<id>2</id>
<username>editor</username>
<password>ab41949825606da179db7c89ddcedcc167b64847</password>
<surname>Smith</surname>
<name>John</name>
<profile>Editor</profile>
<address />
<city>Amsterdam</city>
<state />
<zip />
<country>nl</country>
<email>john.smith@mail.com</email>
<organisation />
<kind>gov</kind>

</record>
</response>

Exceptions:

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service

User groups list (xml.usergroups.list)

The xml.usergroups.list service can be used to retrieve the groups assigned to a user.

30 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Requires authentication: Yes

Request

Parameters:

• id: User identifier (multiple id elements can be espeficied)

User groups list request example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.usergroups.list

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<id>3</id>
<request>

Response

Here follows the structure of the response:

• group: This is the container for each user group element returned

• id: Group identifier

• name: Group name

• description: Group description

User groups list response example:

<?xml version="1.0" encoding="UTF-8"?>
<groups>

<group>
<id>3</id>
<name>RWS</name>
<description />

</group>
</groups>

Exceptions:

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service

• User XXXX doesn’t exist, if no exists a user with provided id value

User information (user.get)

Retrieves user information. Non XML response.

4.4. User services 31

GeoNetwork Developer Manual, Release 2.6.4

4.4.2 Users maintenance

Create a user (user.update)

The user.update service can be used to create new users, update user information and reset user pass-
word, depending on the value of the operation parameter. Only users with profiles Administrator or
UserAdmin can create new users.

Users with profile Administrator can create users in any group, while users with profile UserAdmin
can create users only in the groups where they belong.

Requires authentication: Yes

Request

Parameters:

• operation: (mandatory) newuser

• username: (mandatory) User login name

• password: (mandatory) User password

• profile: (mandatory) User profile

• surname:User surname

• name: User name

• address: User physical address

• city: User address city

• state: User address state

• zip: User address zip

• country: User address country

• email: User email

• org: User organisation/departament

• kind: Kind of organisation

• groups: Group identifier to set for the user, can be multiple groups elements

• groupid: Group identifier

User create request example:

Url:
http://localhost:8080/geonetwork/srv/en/user.update

Mime-type:
application/xml

Post request:
<request>

<operation>**newuser**</operation>
<username>samantha</username>

32 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

<password>editor2</password>
<profile>Editor</profile>
<name>Samantha</name>
<city>Amsterdam</city>
<country>Netherlands</country>
<email>samantha@mail.net</email>
<groups>2</groups>
<groups>4</groups>

</request>

Response

If request it’s executed succesfully HTTP 200 status code it’s returned. If request fails an HTTP status
code error it’s returned and the response contains the XML document with the exception.

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

• Missing parameter (error id: missing-parameter), when mandatory parameters are not pro-
vided

• bad-parameter, when a mandatory fields is empty

• Unknow profile XXXX (error id: error), when the profile is not valid

• ERROR: duplicate key violates unique constraint “users_username_key”, when trying to
create a new user using an existing username

• ERROR: insert or update on table “usergroups” violates foreign key constraint “user-
groups_groupid_fkey”, when group identifier is not an existing group identifier

• ERROR: tried to add group id XX to user XXXX - not allowed because you are not a mem-
ber of that group, when the authenticated user has profile UserAdmin and tries to add the user
to a group in which the UserAdmin user is not allowed to manage

• ERROR: you don’t have rights to do this, when the authenticated user has a profile that is not
Administrator or UserAdmin

Update user information (user.update)

The user.update service can be used to create new users, update user information and reset user pass-
word, depending on the value of the operation parameter. Only users with profiles Administrator or
UserAdmin can update users information.

Users with profile Administrator can update any user, while users with profile UserAdmin can update
users only in the groups where they belong.

Requires authentication: Yes

4.4. User services 33

GeoNetwork Developer Manual, Release 2.6.4

Request

Parameters:

• operation: (mandatory) editinfo

• id: (mandatory) Identifier of the user to update

• username: (mandatory) User login name

• password: (mandatory) User password

• profile: (mandatory) User profile

• surname: User surname

• name: User name

• address: User physical address

• city: User address city

• state: User address state

• zip: User address zip

• country: User address country

• email: User email

• org: User organisation/departament

• kind: Kind of organisation

• groups: Group identifier to set for the user, can be multiple groups elements

• groupid: Group identifier

Remarks: If an optional parameter it’s not provided the value it’s updated in the database with an empty
string.

Update user information request example:

Url:
http://localhost:8080/geonetwork/srv/en/user.update

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<operation>**editinfo**</operation>
<id>5</id>
<username>samantha</username>
<password>editor2</password>
<profile>Editor</profile>
<name>Samantha</name>
<city>Rotterdam</city>
<country>Netherlands</country>
<email>samantha@mail.net</email>

</request>

34 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Response

If request it’s executed succesfully HTTP 200 status code it’s returned. If request fails an HTTP status
code error it’s returned and the response contains the XML document with the exception.

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

• Missing parameter (error id: missing-parameter), when the mandatory parameters are not
provided. Returned 400 HTTP code

• bad-parameter, when a mandatory field is empty. Returned 400 HTTP code

• Unknow profile XXXX (error id: error), when the profile is not valid. Returned 500 HTTP
code

• ERROR: duplicate key violates unique constraint “users_username_key”, when trying to
create a new user using an existing username. Returned 500 HTTP code

• ERROR: insert or update on table “usergroups” violates foreign key constraint “user-
groups_groupid_fkey”, when the group identifier is not an existing group identifier. Returned
500 HTTP code

• ERROR: tried to add group id XX to user XXXX - not allowed because you are not a mem-
ber of that group, when the authenticated user has profile UserAdmin and tries to add the user
to a group in which the UserAdmin user is not allowed to manage. Returned 500 HTTP code

• ERROR: you don’t have rights to do this, when the authenticated user has a profile that is not
Administrator or UserAdmin. Returned 500 HTTP code****

Reset user password (user.update)

The user.update service can be used to create new users, update user information and reset user pass-
word, depending on the value of the operation parameter. Only users with profiles Administrator or
UserAdmin can reset users password.

Users with profile Administrator can reset the password for any user, while users with profile UserAd-
min can reset the password for users only in the groups where they belong.

Requires authentication: Yes

Request

Parameters:

• operation: (mandatory) resetpw

• id: (mandatory) Identifier of the user to reset the password

• username: (mandatory) User login name

• password: (mandatory) User new password

4.4. User services 35

GeoNetwork Developer Manual, Release 2.6.4

• profile: (mandatory) User profile

Reset user password request example:

Url:
http://localhost:8080/geonetwork/srv/en/user.update

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<operation>**resetpw**</operation>
<id>2</id>
<username>editor</username>
<password>newpassword</password>
<profile>Editor</profile>

</request>

Response

If request it’s executed succesfully HTTP 200 status code it’s returned. If request fails an HTTP status
code error it’s returned and the response contains the XML document with the exception.

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

• Missing parameter (error id: missing-parameter), when the mandatory parameters are not
provided. Returned 400 HTTP code

• bad-parameter, when a mandatory field is empty. Returned 400 HTTP code

• Unknow profile XXXX (error id: error), when the profile is not valid. Returned 500 HTTP
code

• ERROR: you don’t have rights to do this, when the authenticated user has a profile that it’s not
Administrator or UserAdmin. Returned 500 HTTP code****

Update current authenticated user information (user.infoupdate)

The user.infoupdate service can be used to update the information related to the current authenticated
user.

Requires authentication: Yes

Request

Parameters:

• surname: (mandatory) User surname

36 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

• name: (mandatory) User name

• address: User physical address

• city: User address city

• state: User address state

• zip: User address zip

• country: User address country

• email: User email

• org: User organisation/departament

• kind: Kind of organisation

Remarks: If an optional parameter is not provided the value is updated in the database with an empty
string.

Current user info update request example:

Url:
http://localhost:8080/geonetwork/srv/en/user.infoupdate

Mime-type:
application/xml

Post request:
<request>

<name>admin</name>
<surname>admin</surname>
<address>address</address>
<city>Amsterdam</city>
<zip>55555</zip>
<country>Netherlands</country>
<email>user@mail.net</email>
<org>GeoCat</org>
<kind>gov</kind>

</request>

Response

If request it’s executed succesfully HTTP 200 status code it’s returned. If request fails an HTTP status
code error it’s returned and the response contains the XML document with the exception.

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated. Re-
turned 401 HTTP code

Change current authenticated user password (user.pwupdate)

The user.pwupdate service can be used to change the password of the current user authenticated.

Requires authentication: Yes

4.4. User services 37

GeoNetwork Developer Manual, Release 2.6.4

Request

Parameters:

• password: Actual user password

• newPassword: New password to set for the user

Example:

<request>
<password>admin</password>
<newPassword>admin2</newPassword>

</request>

Response

If request it’s executed succesfully HTTP 200 status code it’s returned. If request fails an HTTP status
code error it’s returned and the response contains the XML document with the exception.

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated. Re-
turned 401 HTTP code

• Old password is not correct. Returned 500 HTTP code

• Bad parameter (newPassword), when an empty password is provided. Returned 400 HTTP code

Remove a user (user.remove)

The user.remove service can be used to remove an existing user. Only users with profiles Administrator
or UserAdmin can delete users.

Users with profile Administrator can delete any user (except himself), while users with profile User-
Admin can delete users only in the groups where they belong (except himself).

Requires authentification: Yes

Request

Parameters:

• id: (mandatory) User identifier to delete

User remove request example:

Url:
http://localhost:8080/geonetwork/srv/en/user.remove

Mime-type:
application/xml

38 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Post request:
<request>

<id>2</id>
</request>

Response

If request it’s executed succesfully HTTP 200 status code it’s returned. If request fails an HTTP status
code error it’s returned and the response contains the XML document with the exception.

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

• Missing parameter (error id: missing-parameter), when the id parameter is not provided. Re-
turned 400 HTTP code

• You cannot delete yourself from the user database (error id: error), when trying to delete the
authenticated user himself. Returned 500 HTTP code

• You don’t have rights to delete this user (error id: error), when trying to delete using an
authenticated user that don’t belongs to Administrator or User administrator profiles. Returned
500 HTTP code

• You don’t have rights to delete this user because the user is not part of your group (error
id: error), when trying to delete a user that is not in the same group of the authenticated user
(belonging the authenticated user to profile User administrator). Returned 500 HTTP code

4.5 Metadata services

4.5.1 Retrieve metadata services

Search metadata (xml.search)

The xml.search service can be used to retrieve the metadata stored in GeoNetwork.

Requires authentication: Optional

Request

Search configuration parameters (all values are optional)

• remote: Search in local catalog or in a remote catalog. Values: off (default), on

• extended: Values: on, off (default)

• timeout: Timeout for request in seconds (default: 20)

• hitsPerPage: Results per page (default: 10)

• similarity: Lucene accuracy for searches (default 0.8)

4.5. Metadata services 39

GeoNetwork Developer Manual, Release 2.6.4

• sortBy: Sorting criteria. Values: relevance (default), rating, popularity, changeDate, title

Search parameters (all values are optional):

• eastBL, southBL, northBL, westBL: Bounding box to restrict the search

• relation: Bounding box criteria. Values: equal, overlaps (default), encloses, fullyOutsideOf,
intersection, crosses, touches, within

• any: Text to search in a free text search

• title: Metadata title

• abstract: Metadata abstract

• themeKey: Metadata keywords. To search for several use a value like “Global” or “watersheds”

• template: Indicates if search for templates or not. Values: n (default), y

• dynamic: Map type. Values: off (default), on

• download: Map type. Values: off (default), on

• digital: Map type. Values: off (default), on

• paper: Map type. Values: off (default), on

• group: Filter metadata by group, if missing search in all groups

• attrset:

• dateFrom: Filter metadata created after specified date

• dateTo: Filter metadata created before specified date

• category: Metadata category. If not specified, search all categories

Request to search for all metadata example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.search

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request />

Request with free text search example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.search

Mime-type:
application/xml

Post request:s
<?xml version="1.0" encoding="UTF-8"?>
<request>

<any>africa</any>
</request>

40 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Request with a geographic search example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.search

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<any>africa</any>
<eastBL>74.91574</eastBL>
<southBL>29.40611</southBL>
<northBL>38.47198</northBL>
<westBL>60.50417</westBL>
<relation>overlaps</relation>
<sortBy>relevance</sortBy>
<attrset>geo</attrset>

</request>

Request to search using dates and keywords example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.search

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<title>africa</title>
<themekey>"Global" or "World"</themekey>
<dateFrom>2000-02-03T12:47:00</dateFrom>
<dateTo>2010-02-03T12:49:00</dateTo>

</request>

Response

The response is the metadata record with additional geonet:info section. The main fields for geonet:info
are:

• response: Response container.

– summary: Attribute count indicates the number of metadata records retrieved

* keywords: List of keywords that are part of the metadata resultset. Each keyword
contains the value and the number of occurences in the retrieved metadata

– metadata: Container for metadata records found. Each record contains an geonet:info
element with the following information:

* title: RSS channel title

* description: RSS channel description

* item: Metadata RSS item (one item for each metadata retrieved)

4.5. Metadata services 41

GeoNetwork Developer Manual, Release 2.6.4

· id: Metadata internal identifier

· uuid : Metadata Universally Unique Identifier (UUID)

· schema: Metadata schema

· createDate: Metadata creation date

· changeDate: Metadata last modification date

· source: Source catalogue the metadata

· category: Metadata category (Can be multiple elements)

· score: Value indicating the accuracy of search

Metadata search response example:

<?xml version="1.0" encoding="UTF-8"?>
<response from="1" to="7">

<summary count="7" type="local">
<keywords>

<keyword count="2" name="Global"/>
<keyword count="2" name="World"/>
<keyword count="2" name="watersheds"/>
<keyword count="1" name="Biology"/>
<keyword count="1" name="water resources"/>
<keyword count="1" name="endangered plant species"/>
<keyword count="1" name="Africa"/>
<keyword count="1" name="Eurasia"/>
<keyword count="1" name="endangered animal species"/>
<keyword count="1" name="Antarctic ecosystem"/>

</keywords>
</summary>
<metadata xmlns:gmx="http://www.isotc211.org/2005/gmx">

<geonet:info xmlns:geonet="http://www.fao.org/geonetwork">
<id>12</id>
<uuid>bc179f91-11c1-4878-b9b4-2270abde98eb</uuid>
<schema>iso19139</schema>
<createDate>2007-07-25T12:05:45</createDate>
<changeDate>2007-11-06T12:10:47</changeDate>
<source>881a1630-d4e7-4c9c-aa01-7a9bbbbc47b2</source>
<category>maps</category>
<category>interactiveResources</category>
<score>1.0</score>

</geonet:info>
</metadata>
<metadata xmlns:gmx="http://www.isotc211.org/2005/gmx">

<geonet:info xmlns:geonet="http://www.fao.org/geonetwork">
<id>11</id>
<uuid>5df54bf0-3a7d-44bf-9abf-84d772da8df1</uuid>
<schema>iso19139</schema>
<createDate>2007-07-19T14:45:07</createDate>
<changeDate>2007-11-06T12:13:00</changeDate>
<source>881a1630-d4e7-4c9c-aa01-7a9bbbbc47b2</source>
<category>maps</category>
<category>datasets</category>
<category>interactiveResources</category>
<score>0.9178859</score>

</geonet:info>

42 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

</metadata>
</response>

Get metadata (xml.metadata.get)

The xml.metadata.get service can be used to retrieve a metadata record stored in GeoNetwork.

Requires authentication: Optional

Request

Parameters (one of them mandatory):

• uuid : Metadata Universally Unique Identifier (UUID)

• id: Metadata internal identifier

Get metadata request example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.metadata.get

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<uuid>aa9bc613-8eef-4859-a9eb-4df35d8b21e4</uuid>
</request>

Response

The response is the metadata record with additional geonet:info section. The principal fields for
geonet:info are:

• schema: Metadata schema

• createDate: Metadata creation date

• changeDate: Metadata last modification date

• isTemplate: Indicates if the metadata returned is a template

• title: Metadata title

• source: Source catalogue the metadata

• uuid : Metadata Universally Unique Identifier (UUID)

• isHarvested: Indicates if the metadata is harvested

• popularity: Indicates how often the record is retrieved

• rating: Average rating provided by users

• State of operation on metadata for the user: view, notify, download, dynamic, featured, edit

4.5. Metadata services 43

GeoNetwork Developer Manual, Release 2.6.4

• owner: Indicates if the user that executed the service is the owner of metadata

• ownername: Metadata owner name

Get metadata response example:

<?xml version="1.0" encoding="UTF-8"?>
<Metadata xmlns:geonet="http://www.fao.org/geonetwork"

xmlns:csw="http://www.opengis.net/cat/csw/2.0.2">
<mdFileID>aa9bc613-8eef-4859-a9eb-4df35d8b21e4</mdFileID>
...
<geonet:info>

<id>10</id>
<schema>iso19115</schema>
<createDate>2005-08-23T17:58:18</createDate>
<changeDate>2007-03-12T17:49:50</changeDate>
<isTemplate>n</isTemplate>
<title />
<source>881a1630-d4e7-4c9c-aa01-7a9bbbbc47b2</source>
<uuid>aa9bc613-8eef-4859-a9eb-4df35d8b21e4</uuid>
<isHarvested>n</isHarvested>
<popularity>0</popularity>
<rating>0</rating>
<view>true</view>
<notify>true</notify>
<download>true</download>
<dynamic>true</dynamic>
<featured>true</featured>
<edit>true</edit>
<owner>true</owner>
<ownername>admin</ownername>
<subtemplates />

</geonet:info>
</Metadata>

Errors

• Request must contain a UUID or an ID, when no uuid or id parameter is provided

• Operation not allowed (error id: operation-not-allowed), when the user is not allowed to show
the metadata record. Returned 403 HTTP code

RSS Search: Search metadata and retrieve in RSS format (rss.search)

The rss.search service can be used to retrieve metadata records in RSS format, using regular search
parameters. This service can be configured in WEB-INF\config.xml file setting the next parameters:

• maxSummaryKeys: Maximum number of RSS records to retrieve (default = 10)

Requires authentication: Optional. If not provided only public metadata records are retrieved

Request

Parameters:

44 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

• georss: valid values are simple, simplepoint and default. See also http://georss.org

– simple: Bounding box in georss simple format

– simplepoint: Bounding box in georss simplepoint format

– default: Bounding box in georss GML format

• eastBL, southBL, northBL, westBL: Bounding box to restrict the search****

• relation: Bounding box criteria. Values: equal, overlaps (default), encloses, fullyOutsideOf,
intersection, crosses, touches, within

• any: Text to search in a free text search

• title: Metadata title

• abstract: Metadata abstract

• themeKey: Metadata keywords. To search for several use a value like “Global” or “watersheds”

• dynamic: Map type. Values: off (default), on

• download: Map type. Values: off (default), on

• digital: Map type. Values: off (default), on

• paper: Map type. Values: off (default), on

• group: Filter metadata by group, if missing search in all groups

• attrset:

• dateFrom: Filter metadata created after specified date

• dateTo: Filter metadata created before specified date

• category: Metadata category. If not specified, search all categories

RSS search request example:

Url:
http://localhost:8080/geonetwork/srv/en/rss.search

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<georss>simplepoint</georss>
<any>africa</any>
<eastBL>74.91574</eastBL>
<southBL>29.40611</southBL>
<northBL>38.47198</northBL>
<westBL>60.50417</westBL>
<relation>overlaps</relation>
<sortBy>relevance</sortBy>
<attrset>geo</attrset>

</request>

4.5. Metadata services 45

http://georss.org

GeoNetwork Developer Manual, Release 2.6.4

Response

Here follows the principal fields of the response:

• channel: This is the container for the RSS response

– title: RSS channel title

– description: RSS channel description

– item: Metadata RSS item (one item for each metadata retrieved)

* title: Metadata title

* link: Link to show metadata page. Additional link elements (with rel=”alternate”) to
OGC WXS services, shapefile/images files, Google KML, etc. can be returned depend-
ing on metadata

* description: Metadata description

* pubDate: Metadata publication date

* media: Metadata thumbnails

* georrs:point: Bounding box in georss simplepoint format

RSS latest response example:

Mimetype:
application/rss+xml

Response:
<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:media="http://search.yahoo.com/mrss/" xmlns:georss="http://www.georss.org/georss" xmlns:gml="http://www.opengis.net/gml" version="2.0">

<channel>
<title>GeoNetwork opensource portal to spatial data and information</title>
<link>http://localhost:8080/geonetwork</link>
<description>GeoNetwork opensource provides Internet access to interactive maps, satellite imagery and related spatial databases ... </description>
<language>en</language>
<copyright>All rights reserved. Your generic copyright statement </copyright>
<category>Geographic metadata catalog</category>
<generator>GeoNetwork opensource</generator>
<ttl>30</ttl>
<item>

<title>Hydrological Basins in Africa (Sample record, please remove!)</title>
<link>http://localhost:8080/geonetwork?uuid=5df54bf0-3a7d-44bf-9abf-84d772da8df1</link>
<link href="http://geonetwork3.fao.org/ows/296?SERVICE=wms$amp;VERSION=1.1.1&REQUEST=GetMap&BBOX=-17.3,-34.6,51.1,38.2&LAYERS=hydrological_basins&SRS=EPSG:4326&WIDTH=200&HEIGHT=213&FORMAT=image/png&TRANSPARENT=TRUE&STYLES=default" type="image/png" rel="alternate" title="Hydrological basins in Africa"/>
<link href="http://localhost:8080/geonetwork/srv/en/google.kml?uuid=5df54bf0-3a7d-44bf-9abf-84d772da8df1&layers=hydrological_basins" type="application/vnd.google-earth.kml+xml" rel="alternate" title="Hydrological basins in Africa"/>
<category>Geographic metadata catalog</category>
<description><![CDATA[...]]></description>
<pubDate>06 Nov 2007 12:13:00 EST</pubDate>
<guid>http://localhost:8080/geonetwork?uuid=5df54bf0-3a7d-44bf-9abf-84d772da8df1</guid>
<media:content url="/geonetwork/srv/en/resources.get?id=11&fname=thumbnail_s.gif&access=public" type="image/gif" width="100"/>
<media:text>Major hydrological basins and their sub-basins ...</media:text>
<!--Bounding box in georss simplepoint format (default) (http://georss.org)-->
<georss:point>16.9 1.8</georss:point>
</item>

</channel>
</rss>

46 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

RSS latest: Get latest updated metadata (rss.latest)

The rss.latest service can be used to retrieve the latest added metadata records in RSS format. This
service can be configured in WEB-INF\config.xml file setting the next parameters:

• maxItems: Maximum number of RSS records to retrieve (default = 20)

• timeBetweenUpdates: Minutes to query database for new metadata (default = 60)

Requires authentication: Optional. If not provided only public metadata records are retrieved

Request

Parameters:

• georss: valid values are simple, simplepoint and default. See also http://georss.org

– simple: Bounding box in georss simple format

– simplepoint: Bounding box in georss simplepoint format

– default: Bounding box in georss GML format

RSS latest request example:

Url:
http://localhost:8080/geonetwork/srv/en/rss.latest

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<georss>default</georss>
<maxItems>1</maxItems>

</request>

Response

Here follows the principal fields of the response:

• channel: This is the container for the RSS response

– title: RSS channel title

– description: RSS channel description

– item: Metadata RSS item (one item for each metadata retrieved)

* title: Metadata title

* link: Link to show metadata page. Additional link elements (with rel=”alternate”) to
OGC WXS services, shapefile/images files, Google KML, etc. can be returned depend-
ing on metadata

* description: Metadata description

* pubDate: Metadata publication date

4.5. Metadata services 47

http://georss.org

GeoNetwork Developer Manual, Release 2.6.4

* media: Metadata thumbnails

* georrs:where: Bounding box with the metadata extent

RSS latest response example:

Mimetype:
application/rss+xml

Response:
<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:media="http://search.yahoo.com/mrss/" xmlns:georss="http://www.georss.org/georss"

xmlns:gml="http://www.opengis.net/gml" version="2.0">
<channel>

<title>GeoNetwork opensource portal to spatial data and information</title>
<link>http://localhost:8080/geonetwork</link>
<description>GeoNetwork opensource provides Internet access to interactive maps,
satellite imagery and related spatial databases ... </description>
<language>en</language>
<copyright>All rights reserved. Your generic copyright statement </copyright>
<category>Geographic metadata catalog</category>
<generator>GeoNetwork opensource</generator>
<ttl>30</ttl>
<item>

<title>Hydrological Basins in Africa (Sample record, please remove!)</title>
<link>http://localhost:8080/geonetwork?uuid=5df54bf0-3a7d-44bf-9abf-84d772da8df1</link>
<link href="http://geonetwork3.fao.org/ows/296?SERVICE=wms$amp;VERSION=1.1.1&REQUEST=GetMap

&BBOX=-17.3,-34.6,51.1,38.2&LAYERS=hydrological_basins&SRS=EPSG:4326&WIDTH=200
&HEIGHT=213&FORMAT=image/png&TRANSPARENT=TRUE&STYLES=default" type="image/png"
rel="alternate" title="Hydrological basins in Africa"/>

<link href="http://localhost:8080/geonetwork/srv/en/google.kml?
uuid=5df54bf0-3a7d-44bf-9abf-84d772da8df1&layers=hydrological_basins"
type="application/vnd.google-earth.kml+xml"
rel="alternate" title="Hydrological basins in Africa"/>

<category>Geographic metadata catalog</category>
<description><![CDATA[...]]></description>
<pubDate>06 Nov 2007 12:13:00 EST</pubDate>
<guid>http://localhost:8080/geonetwork?uuid=5df54bf0-3a7d-44bf-9abf-84d772da8df1</guid>
<media:content url="/geonetwork/srv/en/resources.get?id=11&fname=thumbnail_s.gif

&access=public" type="image/gif" width="100"/>
<media:text>Major hydrological basins and their sub-basins ...</media:text>

<!--Bounding box in georss GML format (http://georss.org)-->
<georss:where>

<gml:Envelope>
<gml:lowerCorner>-34.6 -17.3</gml:lowerCorner>
<gml:upperCorner>38.2 51.1</gml:upperCorner>

</gml:Envelope>
</georss:where>

</item>
</channel>
</rss>

48 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

4.5.2 Metadata administration services

Update operations allowed for a metadata (metadata.admin)

The metadata.admin service updates the operations allowed for a metadata with the list of operations
allowed send in the parameters, deleting all the operations allowed assigned previously.

Requires authentication: Yes

Request to metadata.admin service

Parameters:

• id: Identifier of metadata to update

• _G_O: (can be multiple elements)

– G: Group identifier

– O: Operation identifier

Operation identifiers:

• 0: view

• 1: download

• 2: editing

• 3: notify

• 4: dynamic

• 5: featured

Request metadata update operations allowed example:

POST:

Url:
http://localhost:8080/geonetwork/srv/en/metadata.admin

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<id>6</id>
<_1_2 />
<_1_1 />

</request>

GET:

Url:
http://localhost:8080/geonetwork/srv/en/metadata.admin?id=6&_1_2&_1_1

4.5. Metadata services 49

GeoNetwork Developer Manual, Release 2.6.4

Response to metadata.admin service

The response contains the identifier of the metadata updated.

Response metadata update operations allowed example:

<?xml version="1.0" encoding="UTF-8"?>
<request>

<id>6</id>
</request>

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

• Metadata not found (error id: metadata-not-found) if not exists a metadata record with the
identifier provided

• ERROR: insert or update on table “operationallowed” violates foreign key ‘operational-
lowed_operationid_fkey », if an operation identifier provided is not valid

• ERROR: insert or update on table “operationallowed” violates foreign key ‘operational-
lowed_groupid_fkey », if a group identifier provided is not valid

Massive update privilegies (metadata.massive.update.privileges)

The metadata.massive.update.privileges service updates the operations allowed for a selected meta-
data with the list of operations allowed send in the parameters, deleting all the operations allowed
assigned previously.

This service requires a previous call to metadata.select service to select the metadata records to update.

Requires authentication: Yes

Request to metadata.select service

Parameters:

• id: Identifier of metadata to select

• selected: Selection state. Values: add, add-all, remove, remove-all

Select all metadata allowed example:

Url:
http://localhost:8080/geonetwork/srv/en/metadata.select

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

50 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

<selected>add-all</selected>
</request>

Select a metadata record example:

Url:
http://localhost:8080/geonetwork/srv/en/metadata.select

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<id>2</id>
<selected>add</selected>

</request>

Clear metadata selection example:

Url:
http://localhost:8080/geonetwork/srv/en/metadata.select

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<selected>remove-all</selected>
</request>

Response to metadata.select service

The response contains the number of metadata selected.

Response select metadata example:

<?xml version="1.0" encoding="UTF-8"?>
<request>

<Selected>10</Selected>
</request>

Request to metadata.massive.update.privileges

Parameters:

• _G_O: (can be multiple elements) - G: Group identifier - O: Operation identifier

Operation identifiers:

• 0: view

• 1: download

• 2: editing

4.5. Metadata services 51

GeoNetwork Developer Manual, Release 2.6.4

• 3: notify

• 4: dynamic

• 5: featured

Request metadata massive update privilegies example:

POST:

Url:
http://localhost:8080/geonetwork/srv/en/metadata.massive.update.privileges

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<_1_2 />
<_1_1 />

</request>

GET:

Url:
http://localhost:8080/geonetwork/srv/en/metadata.massive.update.privileges?_1_2&_1_1

Response to metadata.massive.update.privileges

If request is executed succesfully HTTP 200 status code is returned. If request fails an HTTP status code
error is returned and the response contains the XML document with the exception.

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

• Metadata not found (error id: metadata-not-found) if not exists a metadata record with the
identifier provided

• ERROR: insert or update on table “operationallowed” violates foreign key ‘operational-
lowed_operationid_fkey », if an operation identifier provided is not valid

• ERROR: insert or update on table “operationallowed” violates foreign key ‘operational-
lowed_groupid_fkey », if a group identifier provided is not valid

4.5.3 Metadata ownership services

This services allow to manage the metadata ownership (the user who created the metadata), for example
to get information about the users who created metadata records or transfer the ownership of metadata
records to another user. Only users with Administrator and UserAdmin profiles can execute these
services.

52 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Massive new owner (metadata.massive.newowner)

The metadata.massive.newowner service allows to change the owner of a group of metadata. This
service requires a previous call to metadata.select service to select the metadata records to update.

Requires authentication: Yes

Request to metadata.select service

Parameters:

• id: Identifier of metadata to select (can be multiple elements)

• selected: Selection state. Values: add, add-all, remove, remove-all

Select metadata request example:

Url:
http://localhost:8080/geonetwork/srv/en/metadata.select

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<selected>add-all</selected>
</request>

Response to metadata.select service

The response contains the number of metadata selected.

Select metadata response example:

<?xml version="1.0" encoding="UTF-8"?>
<request>

<Selected>10</Selected>
</request>

Request to metadata.massive.newowner

Once the metadata records have been selected can be metadata.massive.newowner invoked with the
next parameters:

• user: (mandatory) New owner user identifier

• group: (mandatory) New owner group user identifier

Transfer ownership request example:

Url:
http://localhost:8080/geonetwork/srv/en/metadata.massive.newowner

Mime-type:

4.5. Metadata services 53

GeoNetwork Developer Manual, Release 2.6.4

application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<user>2</user>
<group>2</group>

</request>

Response to metadata.massive.newowner

If request is executed succesfully HTTP 200 status code is returned. If request fails an HTTP status code
error is returned and the response contains the XML document with the exception.

Transfer ownership (xml.ownership.transfer)

The xml.ownership.transfer service can be used to transfer ownership and privileges of metadata
owned by a user (in a group) to another user (in a group). This service should be used with data
retrieved from previous invocations to the services xml.ownership.editors and xml.ownership.groups,
described below.

Requires authentication: Yes

Request

Parameters:

• sourceUser: (mandatory) Identifier of the user to transfer the ownership of her metadata****

• sourceGroup: (mandatory) Identifier of source group of the metadata to transfer ownership

• targetUser: (mandatory) Identifier of the user to get the set the new metadata ownership

• targetGroup: (mandatory) Identifier of target group of the transferred ownership metadata

Example: In the next example we are going to transfer the ownership and privileges of metadata owned
of user John (id=2) in group RWS (id=5) to user Samantha(id=7) in group NLR (id=6)

Transfer ownership request example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.ownership.transfer

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<sourceUser>2</sourceUser>
<sourceGroup>5</sourceGroup>
<targetUser>7</targetUser>
<targetGroup>6</targetGroup>

</request>

54 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Response

Here follows the structure of the response:

• response: This is the container for the response

– privileges: Transferred privileges

– metadata: Transferred metadata records

Transfer ownership response example:

<?xml version="1.0" encoding="UTF-8"?>
<response>

<privileges>4</privileges>
<metadata>2</metadata>

</response>

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

• Missing parameter (error id: missing-parameter), when mandatory parameters are not pro-
vided

• bad-parameter XXXX, when a mandatory parameter is empty

Retrieve metadata owners (xml.ownership.editors)

The xml.ownership.editors service can be used to retrieve the users that own metadata records.

Requires authentication: Yes

Request

Parameters:

• None

Retrieve metadata owners request example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.ownership.editors

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request />

4.5. Metadata services 55

GeoNetwork Developer Manual, Release 2.6.4

Response

Here follows the structure of the response:

• root: This is the container for the response

– editor: Container for each editor user information

* id: User identifier

* username: User login

* name: User name

* surname: User surname

* profile: User profile

Retrieve metadata editors response example:

<?xml version="1.0" encoding="UTF-8"?>
<root>

<editor>
<id>1</id>
<username>admin</username>
<name>admin</name>
<surname>admin</surname>
<profile>Administrator</profile>

</editor>
<editor>

<id>2</id>
<username>samantha</username>
<name>Samantha</name>
<surname>Smith</surname>
<profile>Editor</profile>

</editor>
</root>

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

Retrieve groups/users allowed to transfer metadata ownership from a user
(xml.ownership.groups)

The xml.ownership.groups service can be used to retrieve the groups/users to which can be transferred
the metadata ownership/privilegies from the specified user.

Request

Parameters:

• id: (mandatory) User identifier of the user to check to which groups/users can be transferred the
ownership/privilegies of her metadata

56 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Retrieve ownership groups request example:

Url:
http://localhost:8080/geonetwork/srv/en/xml.ownership.groups

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<id>2</id>
</request>

Response

Here follows the structure of the response:

• response: This is the container for the response

– targetGroup: Allowed target group to transfer ownership of user metadata (can be multiple
targetGroup elements)

* id, name, description, email, referrer, label: Group information

* editor: Users of the group that own metadata (can be multiple editor elements)

· id,surname, name: Metadata user owner information

Retrieve ownership groups response example:

<?xml version="1.0" encoding="UTF-8"?>
<response>

<targetGroup>
<id>2</id>
<name>sample</name>
<description>Demo group</description>
<email>group@mail.net</email>
<referrer />
<label>

<en>Sample group</en>
<fr>Sample group</fr>
<es>Sample group</es>
<de>Beispielgruppe</de>
<nl>Voorbeeldgroep</nl>

</label>
<editor>

<id>12</id>
<surname />
<name />

</editor>
<editor>

<id>13</id>
<surname />
<name>Samantha</name>

</editor>
</targetGroup>
<targetGroup>

4.5. Metadata services 57

GeoNetwork Developer Manual, Release 2.6.4

<id>6</id>
<name>RWS</name>
<description />
<email />
<referrer />
<label>

<de>RWS</de>
<fr>RWS</fr>
<en>RWS</en>
<es>RWS</es>
<nl>RWS</nl>

</label>
<editor>

<id>7</id>
<surname />
<name>Samantha</name>

</editor>
</targetGroup>
...

</response>

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

4.5.4 Metadata editing

This services allow to maintaining the metadata in the catalog.

Insert metadata (metadata.insert)

The metadata.insert service allows to create a new metadata record in the catalog.

Requires authentication: Yes

Request

Parameters:

• data: (mandatory) Contains the metadata record

• group (mandatory): Owner group identifier for metadata

• isTemplate: indicates if the metadata content is a new template or not. Default value: “n”

• title: Metadata title. Only required if isTemplate = “y”

• category (mandatory): Metadata category. Use “_none_” value to don’t assign any category

• styleSheet (mandatory): Stylesheet name to transform the metadata before inserting in the catalog.
Use “_none_” value to don’t apply any stylesheet

58 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

• validate: Indicates if the metadata should be validated before inserting in the catalog. Values: on,
off (default)

Insert metadata request example:

Url:
http://localhost:8080/geonetwork/srv/en/metadata.insert

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<group>2</group>
<category>_none_</category>
<styleSheet>_none_</styleSheet>
<data><![CDATA[

<gmd:MD_Metadata xmlns:gmd="http://www.isotc211.org/2005/gmd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

...
</gmd:DQ_DataQuality>

</gmd:dataQualityInfo>
</gmd:MD_Metadata>]]>

</data>
</request>

Response

If request is executed succesfully HTTP 200 status code is returned. If request fails an HTTP status code
error is returned and the response contains the XML document with the exception.

If validate parameter is set to “on” and the provided metadata is not valid confirming the xsd schema an
exception report is returned.

Validation metadata report:

<?xml version="1.0" encoding="UTF-8"?>
<error id="xsd-validation-error">

<message>XSD Validation error(s)</message>
<class>XSDValidationErrorEx</class>
<stack>

<at class="org.fao.geonet.services.metadata.ImportFromDir"
file="ImportFromDir.java" line="297" method="validateIt" />

<at class="org.fao.geonet.services.metadata.ImportFromDir"
file="ImportFromDir.java" line="281" method="validateIt" />

<at class="org.fao.geonet.services.metadata.Insert"
file="Insert.java" line="102" method="exec" />

<at class="jeeves.server.dispatchers.ServiceInfo"
file="ServiceInfo.java" line="238" method="execService" />

<at class="jeeves.server.dispatchers.ServiceInfo"
file="ServiceInfo.java" line="141" method="execServices" />

<at class="jeeves.server.dispatchers.ServiceManager"
file="ServiceManager.java" line="377" method="dispatch" />

<at class="jeeves.server.JeevesEngine"
file="JeevesEngine.java" line="621" method="dispatch" />

<at class="jeeves.server.sources.http.JeevesServlet"

4.5. Metadata services 59

GeoNetwork Developer Manual, Release 2.6.4

file="JeevesServlet.java" line="174" method="execute" />
<at class="jeeves.server.sources.http.JeevesServlet"

file="JeevesServlet.java" line="99" method="doPost" />
<at class="javax.servlet.http.HttpServlet"

file="HttpServlet.java" line="727" method="service" />
</stack>
<object>

<xsderrors>
<error>

<message>ERROR(1) org.xml.sax.SAXParseException: cvc-datatype-valid.1.2.1: ’’ is not a valid value for ’dateTime’. (Element: gco:DateTime with parent element: gmd:date)</message>
<xpath>gmd:identificationInfo/gmd:MD_DataIdentification/gmd:citation/gmd:CI_Citation/gmd:date/gmd:CI_Date/gmd:date/gco:DateTime</xpath>

</error>
<error>

<message>ERROR(2) org.xml.sax.SAXParseException: cvc-type.3.1.3: The value ’’ of element ’gco:DateTime’ is not valid. (Element: gco:DateTime with parent element: gmd:date)</message>
<xpath>gmd:identificationInfo/gmd:MD_DataIdentification/gmd:citation/gmd:CI_Citation/gmd:date/gmd:CI_Date/gmd:date/gco:DateTime</xpath>

</error>
<error>

<message>ERROR(3) org.xml.sax.SAXParseException: cvc-datatype-valid.1.2.1: ’’ is not a valid value for ’integer’. (Element: gco:Integer with parent element: gmd:denominator)</message>
<xpath>gmd:identificationInfo/gmd:MD_DataIdentification/gmd:spatialResolution/gmd:MD_Resolution/gmd:equivalentScale/gmd:MD_RepresentativeFraction/gmd:denominator/gco:Integer</xpath>

</error>
<error>

<message>ERROR(4) org.xml.sax.SAXParseException: cvc-type.3.1.3: The value ’’ of element ’gco:Integer’ is not valid. (Element: gco:Integer with parent element: gmd:denominator)</message>
<xpath>gmd:identificationInfo/gmd:MD_DataIdentification/gmd:spatialResolution/gmd:MD_Resolution/gmd:equivalentScale/gmd:MD_RepresentativeFraction/gmd:denominator/gco:Integer</xpath>

</error>
</xsderrors>

</object>
<request>

<language>en</language>
<service>metadata.insert</service>

</request>
</error>

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

• Missing parameter (error id: missing-parameter), when mandatory parameters are not pro-
vided. Returned 400 HTTP code

• bad-parameter XXXX, when a mandatory parameter is empty. Returned 400 HTTP code

• ERROR: duplicate key violates unique constraint “metadata_uuid_key”, if exists another
metadata record in catalog with the same uuid of the metadata provided to insert

Update metadata (metadata.update)

The metadata.update service allows to update the content of a metadata record in the catalog.

Requires authentication: Yes

Request

Parameters:

60 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

• id: (mandatory) Identifier of the metadata to update

• version: (mandatory) This parameter is used to check if another user has updated the metadata
after we retrieved it and before involking the update metadata service. CHECK how to provide
value to the user

• isTemplate: indicates if the metadata content is a new template or not. Default value: “n”

• showValidationErrors: Indicates if the metadata should be validated before updating in the cat-
alog.

• title: Metadata title (for templates)

• data (mandatory) Contains the metadata record

Update metadata request example:

Url:
http://localhost:8080/geonetwork/srv/en/metadata.update

Mime-type:
application/xml

Post request:

<?xml version="1.0" encoding="UTF-8"?>
<request>

<id>11</id>

<version>1</version>
<data><![CDATA[

<gmd:MD_Metadata xmlns:gmd="http://www.isotc211.org/2005/gmd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

...

</gmd:DQ_DataQuality>
</gmd:dataQualityInfo>

</gmd:MD_Metadata>]]>
</data>

</request>

Response

If request is executed succesfully HTTP 200 status code is returned. If request fails an HTTP status code
error is returned and the response contains the XML document with the exception.

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

• Missing parameter (error id: missing-parameter), when mandatory parameters are not pro-
vided. Returned 400 HTTP code

• bad-parameter XXXX, when a mandatory parameter is empty. Returned 400 HTTP code

4.5. Metadata services 61

GeoNetwork Developer Manual, Release 2.6.4

• Concurrent update (error id: client), when the version number provided is different from actual
version number for metatada. Returned 400 HTTP code

Delete metadata (metadata.delete)

The metadata.delete service allows to remove a metadata record from the catalog. The metadata con-
tent is backup in MEF format by default in data\removed folder. This folder can be configured in
geonetwork\WEB-INF\config.xml.

Requires authentication: Yes

Request

Parameters:

• id: (mandatory) Identifier of the metadata to delete

Delete metadata request example:

Url:
http://localhost:8080/geonetwork/srv/en/metadata.delete

Mime-type:
application/xml

Post request:
<?xml version="1.0" encoding="UTF-8"?>
<request>

<id>10</id>
</request>

Response

If request is executed succesfully HTTP 200 status code is returned. If request fails an HTTP status code
error is returned and the response contains the XML document with the exception.

Errors

• Service not allowed (error id: service-not-allowed), when the user is not authenticated or his
profile has no rights to execute the service. Returned 401 HTTP code

• Metadata not found (error id: error), if the identifier provided don’t correspond to an existing
metadata. Returned 500 HTTP code

• Operation not allowed (error id: operation-not-allowed), when the user is not authorized to
edit the metadata. To edit a metadata:

– The user is the metadata owner

– The user is an Administrator

– The user has edit rights over the metadata

– The user is a Reviewer and/or UserAdmin and the metadata groupOwner is one of his groups

62 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

4.6 System configuration

4.6.1 Introduction

The GeoNetwork’s configuration is made up of a set of parameters that can be changed to accommodate
any installation need. These parameters are subdivided into 2 groups:

• parameters that can be easily changed through a web interface.

• parameters not accessible from a web interface and that must be changed when the system is not
running.

The first group of parameters can be queried or changed through 2 services: xml.config.get and
xml.config.update. The second group of parameters can be changed using the GAST tool.

4.6.2 xml.config.get

This service returns the system configuration’s parameters.

Request

No parameters are needed.

Response

The response is an XML tree similar to the system hierarchy into the settings structure. The response
has the following elements:

• site: A container for site information.

– name: Site’s name.

– organisation: Site’s organisation name.

• server: A container for server information.

– host: Name of the host from which the site is reached.

– port: Port number of the previous host.

• Intranet: Information about the Intranet of the organisation.

– network: IP address that specifies the network.

– netmask: netmask of the network.

• z3950: Configuration about Z39.50 protocol.

– enable: true means that the server component is running.

– port: Port number to use to listen for incoming Z39.50 requests.

• proxy: Proxy configuration

– use: true means that the proxy is used when connecting to external nodes.

– host: Proxy’s server host.

4.6. System configuration 63

GeoNetwork Developer Manual, Release 2.6.4

– port: Proxy’s server port.

– username: Proxy’s credentials.

– password: Proxy’s credentials.

• feedback: A container for feedback information

– email: Administrator’s email address

– mailServer: Email server to use to send feedback

* host: Email’s host address

* port: Email’s port to use in host address

• removedMetadata: A container for removed metadata information

– dir: Folder used to store removed metadata in MEF format

• ldap: A container for LDAP parameters

– use:

– host:

– port:

– defaultProfile:

– login:

* userDN:

* password:

– distinguishedNames:

* base:

* users:

– userAttribs:

* name:

* password:

* profile:

Example of xml.config.get response:

<config>
<site>

<name>dummy</name>
<organisation>dummy</organization>

</site>
<server>

<host>localhost</host>
<port>8080</port>

</server>
<Intranet>

<network>127.0.0.1</network>
<netmask>255.255.255.0</netmask>

</intranet>

64 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

<z3950>
<enable>true</enable>
<port>2100</port>

</z3950>
<proxy>

<use>false</use>
<host/>
<port/>
<username>proxyuser</username>
<password>proxypass</password>

</proxy>
<feedback>

<email/>
<mailServer>

<host/>
<port>25</port>

</mailServer>
</feedback>
<removedMetadata>

<dir>WEB-INF/removed</dir>
</removedMetadata>
<ldap>

<use>false</use>
<host />
<port />
<defaultProfile>RegisteredUser</defaultProfile>
<login>

<userDN>cn=Manager</userDN>
<password />

</login>
<distinguishedNames>

<base>dc=fao,dc=org</base>
<users>ou=people</users>

</distinguishedNames>
<userAttribs>

<name>cn</name>
<password>userPassword</password>
<profile>profile</profile>

</userAttribs>
</ldap>

</config>

4.6.3 xml.config.update

This service is used to update the system’s information and so it is restricted to administrators.

Request

The request format must have the same structure returned by the xml.config.get service and can con-
tain only elements that the caller wants to be updated. If an element is not included, it will not be
updated. However, when included some elements require mandatory information (i.e. the value cannot
be empty). Please, refer to table_config_parameters. Mandatory and optional parameters for the
xml.config.update service:

4.6. System configuration 65

GeoNetwork Developer Manual, Release 2.6.4

Parameter Type Mandatory
site/name string yes
site/organization string no
server/host string yes
server/port integer no
intranet/network string yes
intranet/netmask string yes
z3950/enable boolean yes
z3950/port integer no
proxy/use boolean yes
proxy/host string no
proxy/port integer no
proxy/username string no
proxy/password string no
feedback/email string no
feedback/mailServer/host string no
feedback/mailServer/port integer no
removedMetadata/dir string yes
ldap/use boolean yes
ldap/host string no
ldap/port integer no
ldap/defaultProfile string yes
ldap/login/userDN string yes
ldap/login/password string no
ldap/distinguishedNames/base string yes
ldap/distinguishedNames/users string yes
ldap/userAttribs/name string yes
ldap/userAttribs/password string yes
ldap/userAttribs/profile string no

Response

On success, the service returns a response element with the OK text. Example:

<response>ok</response>

Otherwise a proper error element is returned.

4.7 General services

4.7.1 xml.info

The xml.info service can be used to query the site about its configuration, services, status and so on. For
example, it is used by the harvesting web interface to retrieve information about a remote node.

Request

The XML request should contain at least one type element to indicates the kind of information to retrieve.
More type elements can be specified to obtain more information at once. The set of allowed values are:

66 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

1. site: Returns general information about the site like its name, id, etc...

2. categories: Returns all site’s categories

3. groups: Returns all site’s groups visible to the requesting user. If the user does not authenticate
himself, only the Intranet and the all groups are visible.

4. operations: Returns all possible operations on metadata

5. regions: Returns all geographical regions usable for queries

6. sources: Returns all GeoNetwork sources that the remote site knows.

The result will contain:

• The remote node’s name and siteId

• All source UUIDs and names that have been discovered through harvesting.

• All source UUIDs and names of metadata that have been imported into the remote node through
the MEF format.

• Administrators can see all users into the system (normal, other administrators, etc...)

• User administrators can see all users they can administrate and all other user administrators in the
same group set. The group set is defined by all groups visible to the user administration, beside
the All and the Intranet groups.

• An authenticated user can see only himself.

• A guest cannot see any user.

Request example:

<request>
<type>site</type>
<type>groups</type>

</request>

Response

Each type element produces an XML subtree so the response to the previous request is like this:

<info>
<site>...</site>
<categories>...</categories>
<groups>...</groups>
...

</info>

Here follows the structure of each subtree:

• site: This is the container

– name: Human readable site name

– siteId: Universal unique identifier of the site

– platform: This is just a container to hold the site’s back end

* name: Platform name. For GeoNetwork installations it must be GeoNetwork.

4.7. General services 67

GeoNetwork Developer Manual, Release 2.6.4

* version: Platform version, given in the X.Y.Z format

* subVersion: Additional version notes, like ’alpha-1’ or ’beta-2’.

Example site information:

<site>
<name>My site</name>
<organisation>FAO</organization>
<siteId>0619cc50-708b-11da-8202-000d9335906e</siteId>
<platform>

<name>geonetwork</name>
<version>2.2.0</version>

</platform>
</site>

• categories: This is the container for categories.

– category [0..n]: A single GeoNetwork’s category. This element has an id attribute which
represents the local identifier for the category. It can be useful to a client to link back to this
category.

* name: Category’s name

* label: The localised labels used to show the category on screen. See
xml_response_categories.

Example response for categories:

<categories>
<category id="1">

<name>datasets</name>
<label>

<en>Datasets</en>
<fr>Jeux de données</fr>

</label>
</category>

</categories>

• groups: This is the container for groups

– group [2..n]: This is a GeoNetwork group. There are at least the Internet and Intranet
groups. This element has an id attribute which represents the local identifier for the group.

* name: Group’s name

* description: Group’s description

* referrer: The user responsible for this group

* email: The email address to notify when a map is downloaded

* label: The localised labels used to show the group on screen. See xml_response_groups.

Example response for groups:

<groups>
<group id="1">

<name>editors</name>
<label>

<en>Editors</en>
<fr>Éditeurs</fr>

68 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

</label>
</group>

</groups>

• operations: This is the container for the operations

– operation [0..n]: This is a possible operation on metadata. This element has an id attribute
which represents the local identifier for the operation.

* name: Short name for the operation.

* reserved: Can be y or n and is used to distinguish between system reserved and user
defined operations.

* label: The localised labels used to show the operation on screen. See
xml_response_operations.

Example response for operations:

<operations>
<operation id="0">

<name>view</name>
<label>

<en>View</en>
<fr>Voir</fr>

</label>
</operation>

</operations>

• regions: This is the container for geographical regions

– region [0..n]: This is a region present into the system. This element has an id attribute which
represents the local identifier for the operation.

* north: North coordinate of the bounding box.

* south: South coordinate of the bounding box.

* west: West coordinate of the bounding box.

* east: east coordinate of the bounding box.

* label: The localised labels used to show the region on screen. See
xml_response_regions.

Example response for regions:

<regions>
<region id="303">

<north>82.99</north>
<south>26.92</south>
<west>-37.32</west>
<east>39.24</east>
<label>

<en>Western Europe</en>
<fr>Western Europe</fr>

</label>
</region>

</regions>

• sources: This is the container.

4.7. General services 69

GeoNetwork Developer Manual, Release 2.6.4

– source [0..n]: A source known to the remote node.

* name: Source’s name

* UUID: Source’s unique identifier

Example response for a source:

<sources>
<source>

<name>My Host</name>
<UUID>0619cc50-708b-11da-8202-000d9335906e</uuid>

</source>
</sources>

• users: This is the container for user information

– user [0..n]: A user of the system

* id: The local identifier of the user

* username: The login name

* surname: The user’s surname. Used for display purposes.

* name: The user’s name. Used for display purposes.

* profile: User’s profile, like Administrator, Editor, UserAdmin etc...

* address: The user’s address.

* state: The user’s state.

* zip: The user’s address zip code.

* country: The user’s country.

* email: The user’s email address.

* organisation: The user’s organisation.

* kind:

Example response for a user:

<users>
<user>

<id>3</id>
<username>eddi</username>
<surname>Smith</surname>
<name>John</name>
<profile>Editor</profile>
<address/>
<state/>
<zip/>
<country/>
<email/>
<organisation/>
<kind>gov</kind>

</user>
</users>

70 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Localised entities

Localised entities have a general label element which contains the localised strings in all supported
languages. This element has as many children as the supported languages. Each child has a name that
reflect the language code while its content is the localised text. Here is an example of such elements:

<label>
<en>Editors</en>
<fr>Éditeurs</fr>
<es>Editores</es>

</label>

4.7.2 xml.forward

This is just a router service. It is used by JavaScript code to connect to a remote host because a JavaScript
program cannot access a machine other than its server. For example, it is used by the harvesting web
interface to query a remote host and retrieve the list of site ids.

Request

The service’s request:

<request>
<site>

<url>...</url>
<type>...</type>
<account>

<username>...</username>
<password>...</password>

</account>
</site>
<params>...</params>

</request>

Where:

1. site: A container for site information where the request will be forwarded.

2. url: Refers to the remote URL to connect to. Usually it points to a GeoNetwork XML service but
it can point to any XML service.

3. type: Its only purpose is to distinguish GeoNetwork nodes which use a different authentication
scheme. The value GeoNetwork refers to these nodes. Any other value, or if the element is
missing, refers to a generic node.

4. account: This element is optional. If present, the provided credentials will be used to authenticate
to the remote site.

5. params: This is just a container for the request that must be executed remotely.

Request for info from a remote server:

<request>
<site>

<url>http://mynode.org:8080/geonetwork/srv/en/xml.info</url>
</site>

4.7. General services 71

GeoNetwork Developer Manual, Release 2.6.4

<params>
<request>

<type>site<type>
</request>

</params>
</request>

Please note that this service uses the GeoNetwork’s proxy configuration.

Response

The response is just the response from the remote service.

4.8 File download services

4.8.1 Introduction

This chapter provides a detailed explanation of GeoNetwork file download services. These are the ser-
vices you would use if you want to download a file attached to a metadata record as ‘Data for Download’
(usually in onlineResources section of an ISO record) or perhaps as a gmx:FileName (where allowed).

The two services, used together, can be used to create a simple click through licensing scheme for file
resources attached to metadata records in GeoNetwork.

4.8.2 xml.file.disclaimer

Retrieves information from the metadata about constraints or restrictions on the resources attached to the
metadata record. The information is xml and an xhtml presentation of the constraints and restrictions.

Note: only users that have download rights over the record will be able to use this service. To obtain
these rights your application will need to use xml.user.login.

Request

Called with a metadata id or uuid, one or more file names (if more than one file is attached to the
metadata record as ‘data for download’) and access (which is almost always private). Example:

<request>
<uuid>d8c8ca11-ecc8-45dc-b424-171a9e212220</uuid>
<fname>roam-rsf-aus-bathy-topo-contours.sff</fname>
<fname>mse09_M8.nc</fname>
<access>private</access>

</request>

Response

The service returns a copy of the request parameters, a copy of the metadata record xml and an HTML
version of the license annex generated from the metadata record by the XSL metadata-license-annex.xsl
(see web/geonetwork/xsl directory).

72 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Example of an xml.file.disclaimer response for a GeoNetwork node (Note: the <metadata> and <li-
cense> elements are not shown in full as they are too big):

<response>
<id>22</id>
<uuid>d8c8ca11-ecc8-45dc-b424-171a9e212220</uuid>
<fname>roam-rsf-aus-bathy-topo-contours.sff</fname>
<fname>mse09_M8.nc</fname>
<access>private</access>
<metadata>

<gmd:MD_Metadata xmlns:gmd="http://www.isotc211.org/2005/gmd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:gco="http://www.isotc211.org/2005/gco" xmlns:gts="http://www.isotc211.org/2005/gts" xmlns:gsr="http://www.isotc211.org/2005/gsr" xmlns:gss="http://www.isotc211.org/2005/gss" xmlns:gmx="http://www.isotc211.org/2005/gmx" xmlns:srv="http://www.isotc211.org/2005/srv" xmlns:gml="http://www.opengis.net/gml" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:geonet="http://www.fao.org/geonetwork">
<!--.........-->

</gmd:MD_Metadata>
</metadata>
<license>

<html>
<head>

<link href="http://localhost:8080/geonetwork/favicon.ico" rel="shortcut icon" type="image/x-icon" />
<link href="http://localhost:8080/geonetwork/favicon.ico" rel="icon" type="image/x-icon" />
<link rel="stylesheet" type="text/css" href="http://localhost:8080/geonetwork/geonetwork.css" />
<link rel="stylesheet" type="text/css" href="http://localhost:8080/geonetwork/modalbox.css" />

</head>
<body>

<!--.........-->
</body>

</html>
</license>

</response>

The idea behind this service is that you will receive an HTML presentation of the constraints/restrictions
on the resource that you can show to a user for an accept/decline response.

The HTML presentation is controlled by the server so together with the xml.file.download service, this
is the way that GeoNetwork can be used to provide a simple click-through licensing system for file
resources attached to metadata records.

To signify acceptance of the license and download the resources you should use the xml.file.download
service.

Errors

• IllegalArgumentException: Request must contain a UUID or an ID parameter.

• IllegalArgumentException: Metadata not found.

• OperationNowAllowedException: you don’t have download permission over this record.

4.8.3 xml.file.download

After your application has received any license conditions that go with the file resources attached to the
metadata record from xml.file.disclaimer, you can use this service to download the resources.

Note: only users that have download rights over the record will be able to use this service. To obtain
these rights your application will need to use xml.user.login.

4.8. File download services 73

GeoNetwork Developer Manual, Release 2.6.4

Request

Called with a metadata id or uuid, one or more file names (if more than one file is attached to the
metadata record as ‘data for download’), access (which is almost always private) and details of the user
who has accepted the license and wants to download the files. Example:

<request>
<uuid>d8c8ca11-ecc8-45dc-b424-171a9e212220</uuid>
<fname>roam-rsf-aus-bathy-topo-contours.sff</fname>
<fname>mse09_M8.nc</fname>
<access>private</access>
<name>Aloyisus Wankania</name>
<org>Allens Butter Factory</org>
<email>A.Wankania@allens.org</email>
<comments>Gimme the data buddy</comments>

</request>

Response

The service returns a zip archive containing the file resources requested, a copy of the metadata record
(as a mef) and a copy of the html license generated and provided by the xml.file.disclaimer service.

Note: this service is protected against users and/or applications that do not go through the
xml.file.disclaimer service first.

Errors

• IllegalArgumentException: Request must contain a UUID or an ID parameter.

• OperationNowAllowedException: you don’t have download permission over this record.

4.9 Harvesting services

4.9.1 Introduction

This chapter provides a detailed explanation of the GeoNetwork’s harvesting services. These services
allow a complete control over the harvesting behaviour. They are used by the web interface and can be
used by any other client.

4.9.2 xml.harvesting.get

Retrieves information about one or all configured harvesting nodes.

Request

Called with no parameters returns all nodes. Example:

<request/>

Otherwise, an id parameter can be specified:

74 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

<request>
<id>123</id>

</request>

Response

When called with no parameters the service provide its output inside a nodes container. You get as many
node elements as are configured.

Example of an xml.harvesting.get response for a GeoNetwork node:

<nodes>
<node id="125" type="geonetwork">

<site>
<name>test 1</name>
<UUID>0619cc50-708b-11da-8202-000d9335aaae</uuid>
<host>localhost</host>
<port>8080</port>
<servlet>geonetwork</servlet>
<account>

<use>false</use>
<username />
<password />

</account>
</site>
<searches>

<search>
<freeText />
<title />
<abstract />
<keywords />
<digital>false</digital>
<hardcopy>false</hardcopy>
<source>

<UUID>0619cc50-708b-11da-8202-000d9335906e</uuid>
<name>Food and Agriculture organisation</name>

</source>
</search>

</searches>
<options>

<every>90</every>
<oneRunOnly>false</oneRunOnly>
<status>inactive</status>

</options>
<info>

<lastRun />
<running>false</running>

</info>
<groupsCopyPolicy>

<group name="all" policy="copy"/>
<group name="mygroup" policy="createAndCopy"/>

</groupsCopyPolicy>
<categories>

<category id="4"/>
</categories>

</node>

4.9. Harvesting services 75

GeoNetwork Developer Manual, Release 2.6.4

</nodes>

If you specify an id, you get a response like the one below.

Example of an xml.harvesting.get response for a WebDAV node:

<node id="165" type="webdav">
<site>

<name>test 1</name>
<UUID>0619cc50-708b-11da-8202-000d9335aaae</uuid>
<url>http://www.mynode.org/metadata</url>
<icon>default.gif</icon>
<account>

<use>true</use>
<username>admin</username>
<password>admin</password>

</account>
</site>
<options>

<every>90</every>
<oneRunOnly>false</oneRunOnly>
<recurse>false</recurse>
<validate>true</validate>
<status>inactive</status>

</options>
<privileges>

<group id="0">
<operation name="view" />

</group>
<group id="14">

<operation name="download" />
</group>

</privileges>
<categories>

<category id="2"/>
</categories>
<info>

<lastRun />
<running>false</running>

</info>
</node>

The node’s structure has a common XML format, plus some additional information provided by the
harvesting types. In the following structure, each element has a cardinality specified using the [x..y]
notation, where x and y denote the minimum and the maximum values. The cardinality [1..1] is omitted
for clarity.

• node: The root element. It has a mandatory id attribute that represents the internal identifier and
a mandatory type attribute which indicates the harvesting type.

– site: A container for site information.

* name (string): The node’s name used to describe the harvesting.

* UUID (string): This is a system generated unique identifier associated to the harvesting
node. This is used as the source field into the Metadata table to group all metadata from
the remote node.

* account: A container for account information.

76 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

· use (boolean): true means that the harvester will use the provided username and
password to authenticate itself. The authentication mechanism depends on the har-
vesting type.

· username (string): Username on the remote node.

· password (string): Password on the remote node.

– options: A container for generic options.

* every (integer): Harvesting interval in minutes.

* oneRunOnly (boolean): After the first run, the entry’s status will be set to inactive.

* status (string): Indicates if the harvesting from this node is stopped (inactive) or if the
harvester is waiting for the timeout (active).

– privileges [0..1]: A container for privileges that must be associated to the harvested meta-
data. This optional element is present only if the harvesting type supports it.

* group [0..n]: A container for allowed operations associated to this group. It has the id
attribute which value is the identifier of a GeoNetwork group.

· operation [0..n]: Specifies an operation to associate to the containing group. It has
a name attribute which value is one of the supported operation names. The only
supported operations are: view, dynamic, featured.

– categories [0..1]: This is a container for categories to assign to each imported metadata.
This optional element is present if the harvesting type supports it.

* category (integer) [0..n]: Represents a local category and the id attribute is its local
identifier.

– info: A container for general information.

* lastRun (string): The lastRun element will be filled as soon as the harvester starts
harvesting from this entry. The value is the

* running (boolean): True if the harvester is currently running.

– error: This element will be present if the harvester encounters an error during harvesting.

* code (string): The error code, in string form.

* message (string): The description of the error.

* object (string): The object that caused the error (if any). This element can be present
or not depending on the case.

Errors

• ObjectNotFoundEx If the id parameter is provided but the node cannot be found.

4.9.3 xml.harvesting.add

Create a new harvesting node. The node can be of any type supported by GeoNetwork (GeoNet-
work node, web folder etc...). When a new node is created, its status is set to inactive. A call to the
xml.harvesting.start service is required to start harvesting.

4.9. Harvesting services 77

GeoNetwork Developer Manual, Release 2.6.4

Request

The service requires an XML tree with all information the client wants to add. In the following sections,
default values are given in parenthesis (after the parameter’s type) and are used when the parameter is
omitted. If no default is provided, the parameter is mandatory. If the type is boolean, only the true and
false strings are allowed.

All harvesting nodes share a common XML structure that must be honoured. Please, refer to the previous
section for elements explanation. Each node type can add extra information to that structure. The
common structure is here described:

• node: The root container. The type attribute is mandatory and must be one of the supported
harvesting types.

– site [0..1]

* name (string, ”)

* account [0..1]

· use (boolean, ’false’)

· username (string, ”)

· password (string, ”)

– options [0..1]

* every (integer, ’90’)

* oneRunOnly (boolean, ’false’)

– privileges [0..1]: Can be omitted but doing so the harvested metadata will not be visible.
Please note that privileges are taken into account only if the harvesting type supports them.

* group [0..n]: It must have the id attribute which value should be the identifier of a
GeoNetwork group. If the id is not a valid group id, all contained operations will be
discarded.

· operation [0..n]: It must have a name attribute which value must be one of the
supported operation names.

– categories [0..1]: Please, note that categories will be assigned to metadata only if the har-
vesting type supports them.

* category (integer) [0..n]: The mandatory id attribute is the category’s local identifier.

Please note that even if clients can store empty values (”) for many parameters, before starting the
harvesting entry those parameters should be properly set in order to avoid errors.

In the following sections, the XML structures described inherit from this one here so the common
elements have been removed for clarity reasons (unless they are containers and contain new children).

Standard GeoNetwork harvesting

To create a node capable of harvesting from another GeoNetwork node, the following XML information
should be provided:

• node: The type attribute is mandatory and must be GeoNetwork.

78 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

– site

* host (string, ”): The GeoNetwork node’s host name or IP address.

* port (string, ’80’): The port to connect to.

* servlet (string, ’geonetwork’): The servlet name chosen in the remote site.

– searches [0..1]: A container for search parameters.

* search [0..n]: A container for a single search on a siteID. You can specify 0 or more
searches. If no search element is provided, an unconstrained search is performed.

· freeText (string, ”) : Free text to search. This and the following parameters are the
same used during normal search using the web interface.

· title (string, ”): Search the title field.

· abstract (string, ”) : Search the abstract field.

· keywords (string, ”) : Search the keywords fields.

· digital (boolean, ’false’): Search for metadata in digital form.

· hardcopy (boolean, ’false’): Search for metadata in printed form.

· source (string, ”): One of the sources present on the remote node.

– groupsCopyPolicy [0..1]: Container for copy policies of remote groups. This mechanism is
used to retain remote metadata privileges.

* group: There is one copy policy for each remote group. This element must have 2
mandatory attributes: name and policy. The name attribute is the remote group’s name.
If the remote group is renamed, it is not found anymore and the copy policy is skipped.
The policy attribute represents the policy itself and can be: copy, createAndCopy,
copyToIntranet. copy means that remote privileges are copied locally if there is locally
a group with the same name as the name attribute. createAndCopy works like copy but
the group is created locally if it does not exist. copyToIntranet works only for the remote
group named all, which represents the public group. This policy copies privileges of the
remote group named all to the local Intranet group. This is useful to restrict metadata
access.

Example of an xml.harvesting.add request for a GeoNetwork node:

<node type="geonetwork">
<site>

<name>South Africa</name>
<host>south.africa.org</host>
<port>8080</port>
<servlet>geonetwork</servlet>
<account>

<use>true</use>
<username>admin</username>
<password>admin</password>

</account>
</site>
<searches>

<search>
<freeText />
<title />
<abstract />

4.9. Harvesting services 79

GeoNetwork Developer Manual, Release 2.6.4

<keywords />
<digital>true</digital>
<hardcopy>false</hardcopy>
<source>0619cc50-708b-11da-8202-000d9335906e</source>

</search>
</searches>
<options>

<every>90</every>
<oneRunOnly>false</oneRunOnly>

</options>
<groupsCopyPolicy>

<group name="all" policy="copy"/>
<group name="mygroup" policy="createAndCopy"/>

</groupsCopyPolicy>
<categories>

<category id="4"/>
</categories>

</node>

WebDAV harvesting

To create a web DAV node, the following XML information should be provided.

• node: The type attribute is mandatory and must be WebDAV.

– site

* url (string, ”): The URL to harvest from. If provided, must be a valid URL starting
with HTTP://.

* icon (string, ’default.gif’): Icon file used to represent this node in the search results.
The icon must be present into the images/harvesting folder.

– options

* recurse (boolean, ’false’): When true, folders are scanned recursively to find metadata.

* validate (boolean, ’false’): When true, GeoNetwork will validate every metadata
against its schema. If the metadata is not valid, it will not be imported.

This type supports both privileges and categories assignment.

Example of an xml.harvesting.add request for a WebDAV node:

<node type="webdav">
<site>

<name>Asia remote node</name>
<url>http://www.mynode.org/metadata</url>
<icon>default.gif</icon>
<account>

<use>true</use>
<username>admin</username>
<password>admin</password>

</account>
</site>
<options>

<every>90</every>
<oneRunOnly>false</oneRunOnly>

80 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

<recurse>false</recurse>
<validate>true</validate>

</options>
<privileges>

<group id="0">
<operation name="view" />

</group>
<group id="14">

<operation name="features" />
</group>

</privileges>
<categories>

<category id="4"/>
</categories>

</node>

CSW harvesting

To create a node to harvest from a CSW capable server, the following XML information should be
provided:

• node: The type attribute is mandatory and must be csw.

– site

* capabilitiesUrl (string): URL of the capabilities file that will be used to retrieve the
operations address.

* icon (string, ’default.gif’) : Icon file used to represent this node in the search results.
The icon must be present into the images/harvesting folder.

– searches [0..1]

* search [0..n]: Contains search parameters. If this element is missing, an unconstrained
search will be performed.

· freeText (string, ”) : Search the entire metadata.

· title (string, ”): Search the dc:title queryable.

· abstract (string, ”): Search the dc:abstract queryable.

· subject (string, ”): Search the dc:subject queryable.

This type supports both privileges and categories assignment.

xml_request_harvesting_add_csw shows an example of an XML request to create a CSW entry.

Example of an xml.harvesting.add request for a CSW node:

<node type="csw">
<site>

<name>Minos CSW server</name>
<capabilitiesUrl>http://www.minos.org/csw?request=GetCapabilities

&amp;service=CSW&amp;acceptVersions=2.0.1</capabilitiesUrl>
<icon>default.gif</icon>
<account>

<use>true</use>
<username>admin</username>

4.9. Harvesting services 81

GeoNetwork Developer Manual, Release 2.6.4

<password>admin</password>
</account>

</site>
<options>

<every>90</every>
<oneRunOnly>false</oneRunOnly>
<recurse>false</recurse>
<validate>true</validate>

</options>
<privileges>

<group id="0">
<operation name="view" />

</group>
<group id="14">

<operation name="features" />
</group>

</privileges>
<categories>

<category id="4"/>
</categories>

</node>

Response

The service’s response is the output of the xml.harvesting.get service of the newly created node.

Summary

The following table:

Summary of features of the supported harvesting types

Harvesting type Authentication Privileges Categories
GeoNetwork native through policies yes
WebDAV HTTP digest yes yes
CSW HTTP Basic yes yes

4.9.4 xml.harvesting.update

This service is responsible for changing the node’s parameters. A typical request has a node root element
and must include the id attribute:

<node id="24">
...

</node>

The body of the node element depends on the node’s type. The update policy is this:

• If an element is specified, the associated parameter is updated.

• If an element is not specified, the associated parameter will not be changed.

82 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

So, you need to specify only the elements you want to change. However, there are some exceptions:

1. privileges: If this element is omitted, privileges will not be changed. If specified, new privileges
will replace the old ones.

2. categories: Like the previous one.

3. searches: Some harvesting types support multiple searches on the same remote note. When
supported, the updated behaviour should be like the previous ones.

Note that you cannot change the type of an node once it has been created.

Request

The request is the same as that used to add an entry. Only the id attribute is mandatory.

Response

The response is the same as the xml.harvesting.get called on the updated entry.

4.9.5 xml.harvesting.remove /start /stop /run

These services are put together because they share a common request interface. Their purpose is obvi-
ously to remove, start, stop or run a harvesting node. In detail:

1. remove: Remove a node. Completely deletes the harvesting instance.

2. start: When created, a node is in the inactive state. This operation makes it active, that is the
countdown is started and the harvesting will be performed at the timeout.

3. stop: Makes a node inactive. Inactive nodes are never harvested.

4. run: Just start the harvester now. Used to test the harvesting.

Request

A set of ids to operate on. Example:

<request>
<id>123</id>
<id>456</id>
<id>789</id>

</request>

If the request is empty, nothing is done.

Response

The same as the request but every id has a status attribute indicating the success or failure of the opera-
tion. For example, the response to the previous request could be:

4.9. Harvesting services 83

GeoNetwork Developer Manual, Release 2.6.4

<request>
<id status="ok">123</id>
<id status="not-found">456</id>
<id status="inactive">789</id>

</request>

Summary of status values summarises, for each service, the possible status values.

Summary of status values

Status value remove start stop run

ok

not-found

inactive

already-inactive

already-active

already-running

4.10 Schema information

4.10.1 Introduction

GeoNetwork is able to handle several metadata schema formats. Up to now, the supported schemas are:

• ISO-19115 (iso19115): GeoNetwork implements an old version of the draft, which uses short
names for elements. This is not so standard so this schema is obsolete and will be removed in
future releases.

• ISO-19139 (iso19139): This is the XML encoding of the ISO 19115:2007 metadata and ISO
19119 service metadata specifications.

• Dublin core (dublin-core): This is a simple metadata schema based on a set of elements capable
of describing any metadata.

• FGDC (fgdc-std): It stands for Federal Geographic Data Committee and it is a metadata schema
used in North America.

In parenthesis is indicated the name used by GeoNetwork to refer to that schema. These schemas are
handled through their XML schema files (XSD), which GeoNetwork loads and interprets to allow the
editor to add and remove elements. Beside its internal use, GeoNetwork provides some useful XML
services to find out some element properties, like label, description and so on.

4.10.2 xml.schema.info

This service returns information about a set of schema elements or codelists. The returned information
consists of a localised label, a description, conditions that the element must satisfy etc...

84 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Request

Due to its nature, this service accepts only the POST binding with application/XML content type. The
request can contain several element and codelist elements. Each element indicate the will to retrieve
information for that element. Here follows the element descriptions:

• element: It must contain a schema and a name attribute. The first one must be one of the sup-
ported schemas (see the section above). The second must be the qualified name of the element
which information must be retrieved. The namespace must be declared into this element or into
the root element of the request.

• codelist: Works like the previous one but returns information about codelists.

<request xmlns:gmd="http://www.isotc211.org/2005/gmd">
<element schema="iso19139" name="gmd:constraintLanguage" />
<codelist schema="iso19115" name="DateTypCd" />

</request>

Note: The returned text is localised depending on the language specified during the service call. A call
to /geonetwork/srv/en/xml.schema.info will return text in the English language.

Response

The response’s root element will be populated with information of the elements/codelists specified into
the request. The structure is the following:

• element: A container for information about an element. It has a name attribute which contains
the qualified name of the element.

– label: The human readable name of the element, localised into the request’s language.

– description: A generic description of the element.

– condition [0..1]: This element is optional and indicates if the element must satisfy a condi-
tion, like the element is always mandatory or is mandatory if another one is missing.

• codelist: A container for information about a codelist. It has a name attribute which contains the
qualified name of the codelist.

– entry [1..n]: A container for a codelist entry. There can be many entries.

* code: The entry’s code. This is the value that will be present inside the metadata.

* label: This is a human readable name, used to show the entry into the user interface. It
is localised.

* description: A generic localised description of the codelist.

<response>
<element name="gmd:constraintLanguage">

<label>Constraint language</label>
<description>language used in Application Schema</description>
<condition>mandatory</condition>

</element>
<codelist name="DateTypCd">

<entry>
<code>creation</code>
<label>Creation</label>
<description>date when the resource was brought into existence</description>

4.10. Schema information 85

GeoNetwork Developer Manual, Release 2.6.4

</entry>
<entry>

<code>publication</code>
<label>Publication</label>
<description>date when the resource was issued</description>

</entry>
<entry>

<code>revision</code>
<label>Revision</label>
<description>date identifies when the resource was examined
or re-examined and improved or amended</description>

</entry>
</codelist>

</response>

Error management

Beside the normal exceptions management, the service can encounter some errors trying to retrieve an
element/codelist information. In this case, the object is copied verbatim to the response with the addition
of an error attribute that describes the encountered error. Here follows an example of such response:

<response>
<element schema="iso19139" name="blablabla" error="not-found"/>

</response>

Possible errors returned by xml.schema.info service:

Error code Description
unknown-schema The specified schema is not supported
unknown-namespace The namespace of the specified prefix was not found
not-found The requested element / codelist was not found

4.11 Relations

4.11.1 Introduction

This chapter describes general services used to get and set relations between metadata records inside
GeoNetwork. The association is performed by a Relations table which stores a metadata id and a meta-
data relatedId fields.

Structure of table Relations:

Field Datatype Description
id foreign key to Metadata(id) Source metadata whose relation is being described.
relatedId foreign key to Metadata(id) Metadata related to the source one

4.11.2 xml.relation.get

This service retrieves all relations between metadata.

86 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Request

The request accepts an id and a relation parameters, whose meaning is this:

• id (integer): This is the local GeoNetwork identifier of the metadata whose relations are re-
quested.

• relation (string, ’normal’): This optional parameter identifies the kind of relation that the client
wants to be returned. It can be one of these values:

– normal: The service performs a query into the id field and returns all relatedId records.

– reverse: The service performs a query into the relatedId field and returns all id records.

– full: Includes both normal and reverse queries (duplicated ids are removed).

Here is an example of POST/XML request:

<request>
<id>10</id>
<relation>full</relation>

</request>

Response

The response has a response root element with several metadata children depending on the relations
found. Example:

<response>
<metadata>...</metadata>
<metadata>...</metadata>
...

</response>

Each metadata element has the following structure:

• title: Metadata title

• abstract: A brief explanation of the metadata

• keyword: Keywords found inside the metadata

• image: Information about thumbnails

• link: A link to the source site

• geoBox: coordinates of the bounding box

• geonet:info: A container for GeoNetwork related information

Example of a metadata record:

<metadata>
<title>Globally threatened species of the world</title>
<abstract> Contains information on animals.</abstract>
<keyword>biodiversity</keyword>
<keyword>endangered animal species</keyword>
<keyword>endangered plant species</keyword>
<link type="url">http://www.mysite.org</link>
<geoBox>

<westBL>-180.0</westBL>

4.11. Relations 87

GeoNetwork Developer Manual, Release 2.6.4

<eastBL>180.0</eastBL>
<southBL>-90.0</southBL>
<northBL>90.0</northBL>

</geoBox>
<geonet:info>

<id>11</id>
<schema>fgdc-std</schema>
<createDate>2005-03-31T19:13:31</createDate>
<changeDate>2007-03-12T14:52:46</changeDate>
<isTemplate>n</isTemplate>
<title/>
<source>38b75c1b-634b-443e-9c36-a12e89b4c866</source>
<UUID>84b4190b-de43-4bd7-b25f-6ed47eb239ac</uuid>
<isHarvested>n</isHarvested>
<view>true</view>
<admin>false</admin>
<edit>false</edit>
<notify>false</notify>
<download>true</download>
<dynamic>false</dynamic>
<featured>false</featured>

</geonet:info>
</metadata>

4.12 MEF services

4.12.1 Introduction

This chapter describes the services related to the Metadata Exchange Format. These services allow to
import/export metadata using the MEF format.

4.12.2 mef.export

As the name suggests, this service exports a GeoNetwork’s metadata using the MEF file format.

This service is public but metadata access rules apply. For a partial export, the view privilege is enough
but for a full export the download privilege is also required. Without a login step, only partial exports
on public metadata are allowed.

This service uses the system’s temporary directory to build the MEF file. With full exports of big data
maybe it is necessary to change this directory. In this case, use the Java’s -D command line option to
set the new directory before running GeoNetwork (if you use Jetty, simply change the script into the bin
directory).

Request

This service accepts requests in GET/POST and XML form. The input parameters are:

• UUID the universal unique identifier of the metadata

• format which format to use. Can be one of: simple, partial, full.

88 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

• skipUuid If provided, tells the exporter to not export the metadata’s UUID. Without the UUID
(which is a unique key inside the database) the metadata can be imported over and over again.
Can be one of: true, false. The default value is false.

Response

The service’s response is a MEF file with these characteristics:

• the name of the file is the metadata’s UUID

• the extension of the file is mef

4.12.3 mef.import

This service is reserved to administrators and is used to import a metadata provided in the MEF format.

Request

The service accepts a multipart/form-data POST request with a single mefFile parameter that must
contain the MEF information.

Response

If all goes well, the service returns an OK element containing the local id of the created metadata.
Example:

<ok>123</ok>

4.12.4 Metadata ownership

Version 1.0 of the MEF format does not take into account the metadata owner (the creator) and the group
owner. This implies that this information is not contained into the MEF file. During import, the user that
is performing this operation will become the metadata owner and the group owner will be set to null.

4.13 CSW service

4.13.1 Introduction

GeoNetwork opensource catalog publishes metadata using CSW (Catalog Services for the Web) protocol
supporting HTTP binding to invoke the operations.

The protocol operations are described in the document OpenGIS® Catalogue Services Specification:

http://portal.opengeospatial.org/files/?artifact_id=20555

GeoNetwork it’s compliant with 2.0.2 version of specification supporting the next CSW operations:

• GetCapabilities

• DescribeRecord

4.13. CSW service 89

GeoNetwork Developer Manual, Release 2.6.4

• GetRecordById

• GetRecords

• Transaction

In this chapter a brief description of the different operations supported in GeoNetwork and some usage
examples. To get a complete reference of the operations and parameters of each CSW operation refer to
the document OpenGIS® Catalogue Services Specification.

The invocation of the operations from a Java client is analogous as described in before chapter for XML
services.

4.13.2 CSW operations

The GeoNetwork opensource catalog CSW service operations are accesible thought the url:

http://localhost:8080/geonetwork/srv/en/csw

The CSW operations can be accesed using POST, GET methods and SOAP encoding.

GetCapabilities

GetCapabilities operation allows CSW clients to retrieve service metadata from a server. The response
to a GetCapabilities request is an XML document containing service metadata about the server.

Request examples

GET request:

http://localhost:8080/geonetwork/srv/en/csw?request=GetCapabilities&service=CSW&acceptVersions=2.0.2&acceptFormats=application%2Fxml

POST request:

Url:
http://localhost:8080/geonetwork/srv/en/csw

Mime-type:
application/xml

Post data:
<?xml version="1.0" encoding="UTF-8"?>
<csw:GetCapabilities xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" service="CSW">
<ows:AcceptVersions xmlns:ows="http://www.opengis.net/ows">
<ows:Version>2.0.2</ows:Version>
</ows:AcceptVersions>
<ows:AcceptFormats xmlns:ows="http://www.opengis.net/ows">
<ows:OutputFormat>application/xml</ows:OutputFormat>
</ows:AcceptFormats>
</csw:GetCapabilities>

SOAP request:

90 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Url:
http://localhost:8080/geonetwork/srv/en/csw

Mime-type:
application/soap+xml

Post data:
<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Body>
<csw:GetCapabilities xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
service="CSW">
<ows:AcceptVersions xmlns:ows="http://www.opengis.net/ows">
<ows:Version>2.0.2</ows:Version>
</ows:AcceptVersions>
<ows:AcceptFormats xmlns:ows="http://www.opengis.net/ows">
<ows:OutputFormat>application/xml</ows:OutputFormat>
</ows:AcceptFormats>
</csw:GetCapabilities>
</env:Body>
</env:Envelope>

DescribeRecord

DescribeRecord operation allows a client to discover elements of the information model supported by
the target catalogue service. The operation allows some or all of the information model to be described.

Request examples

GET request:

http://localhost:8080/geonetwork/srv/en/csw?request=DescribeRecord&service=CSW&version=2.0.2&outputFormat=application%2Fxml&schemaLanguage=http%3A%2F%2Fwww.w3.org%2FXML%2FSchema&namespace=csw%3Ahttp%3A%2F%2Fwww.opengis.net%2Fcat%2Fcsw%2F2.0.2

POST request:

Url:
http://localhost:8080/geonetwork/srv/en/csw

Mime-type:
application/xml

Post data:
<?xml version="1.0" encoding="UTF-8"?>
<csw:DescribeRecord xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" service="CSW" version="2.0.2" outputFormat="application/xml" schemaLanguage="http://www.w3.org/XML/Schema" />

SOAP request:

Url:
http://localhost:8080/geonetwork/srv/en/csw

Mime-type:
application/soap+xml

Post data:
<?xml version="1.0" encoding="UTF-8"?>

4.13. CSW service 91

GeoNetwork Developer Manual, Release 2.6.4

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Body>

<csw:DescribeRecord xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" service="CSW" version="2.0.2" outputFormat="application/xml" schemaLanguage="http://www.w3.org/XML/Schema" />
</env:Body>

</env:Envelope>

GetRecordById

GetRecordById request retrieves the default representation of catalogue metadata records using their
identifier.

To retrieve non public metadata a previous**xml.user.login** service invocation is required. See login
service.

Request examples

GET request:

http://localhost:8080/geonetwork/srv/en/csw?request=GetRecordById&service=CSW&version=2.0.2&elementSetName=full&id=5df54bf0-3a7d-44bf-9abf-84d772da8df1

POST request:

Url:
http://localhost:8080/geonetwork/srv/en/csw

Mime-type:
application/xml

Post data:
<?xml version="1.0" encoding="UTF-8"?>

<csw:GetRecordById xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" service="CSW" version="2.0.2">
<csw:Id>5df54bf0-3a7d-44bf-9abf-84d772da8df1</csw:Id>
<csw:ElementSetName>full</csw:ElementSetName>

</csw:GetRecordById>

SOAP request:

Url:
http://localhost:8080/geonetwork/srv/en/csw

Mime-type:
application/soap+xml

Post data:
<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Body>
<csw:GetRecordById xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" service="CSW" version="2.0.2">

<csw:Id>5df54bf0-3a7d-44bf-9abf-84d772da8df1</csw:Id>
<csw:ElementSetName>full</csw:ElementSetName>

</csw:GetRecordById>
</env:Body>

</env:Envelope>

92 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

GetRecords

GetRecords request allows to query the catalogue metadata records specifying a query in OCG Filter or
CQL languages.

To retrieve non public metadata a previous**xml.user.login** service invocation is required. See login
service.

Request examples

GET request (using CQL language):

Url:
http://localhost:8080/geonetwork/srv/en/csw?request=GetRecords&service=CSW&version=2.0.2&namespace=xmlns%28csw%3Dhttp%3A%2F%2Fwww.opengis.net%2Fcat%2Fcsw%2F2.0.2%29%2Cxmlns%28gmd%3Dhttp%3A%2F%2Fwww.isotc211.org%2F2005%2Fgmd%29&constraint=AnyText+like+%25africa%25&constraintLanguage=CQL_TEXT&constraint_language_version=1.1.0&typeNames=csw%3ARecord

POST request:

Url:
http://localhost:8080/geonetwork/srv/en/csw

Mime-type:
application/xml

Post data:
<?xml version="1.0" encoding="UTF-8"?>
<csw:GetRecords xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" service="CSW" version="2.0.2">

<csw:Query typeNames="csw:Record">
<csw:Constraint version="1.1.0">

<Filter xmlns="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml">
<PropertyIsLike wildCard="%" singleChar="_" escape="\\">
<PropertyName>AnyText</PropertyName>
<Literal>%africa%</Literal>

</PropertyIsLike>
</Filter>

</csw:Constraint>
</csw:Query>

</csw:GetRecords>

SOAP request:

Url:
http://localhost:8080/geonetwork/srv/en/csw

Mime-type:
application/soap+xml

Post data:
<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Body>
<csw:GetRecords xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" service="CSW" version="2.0.2">

<csw:Query typeNames="csw:Record">
<csw:Constraint version="1.1.0">
<Filter xmlns="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml">

<PropertyIsLike wildCard="%" singleChar="_" escape="\\">
<PropertyName>AnyText</PropertyName>
<Literal>%africa%</Literal>

4.13. CSW service 93

GeoNetwork Developer Manual, Release 2.6.4

</PropertyIsLike>
</Filter>

</csw:Constraint>
</csw:Query>

</csw:GetRecords>
</env:Body>

</env:Envelope>

Transaction

The Transaction operation defines an interface for creating, modifying and deleting catalogue records.
This operation requires user authentification to be invoqued.

Insert operation example

POST request:

Url:
http://localhost:8080/geonetwork/srv/en/csw

Mime-type:
application/xml

Post data:
<?xml version="1.0" encoding="UTF-8"?>
<csw:Transaction xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" version="2.0.2" service="CSW">

<csw:Insert>
<gmd:MD_Metadata xmlns:gmd="http://www.isotc211.org/2005/gmd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:gml="http://www.opengis.net/gml">
...
</gmd:MD_Metadata>

</csw:Insert>
</csw:Transaction>

Response:

Url:
<?xml version="1.0" encoding="UTF-8"?>
<csw:TransactionResponse xmlns:csw="http://www.opengis.net/cat/csw/2.0.2">

<csw:TransactionSummary>
<csw:totalInserted>1</csw:totalInserted>
<csw:totalUpdated>0</csw:totalUpdated>
<csw:totalDeleted>0</csw:totalDeleted>

</csw:TransactionSummary>
</csw:TransactionResponse>

Update operation example

POST request:

Url:
http://localhost:8080/geonetwork/srv/en/csw

Mime-type:

94 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

application/xml

Post data:
<?xml version="1.0" encoding="UTF-8"?>
<csw:Transaction xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" version="2.0.2" service="CSW">

<csw:Update>
<gmd:MD_Metadata xmlns:gmd="http://www.isotc211.org/2005/gmd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:gml="http://www.opengis.net/gml">
...
</gmd:MD_Metadata>
<csw:Constraint version="1.1.0">

<ogc:Filter>
<ogc:PropertyIsEqualTo>
<ogc:PropertyName>title</ogc:PropertyName>
<ogc:Literal>Eurasia</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>

</csw:Constraint>
</csw:Update>

</csw:Transaction>

Response:

<?xml version="1.0" encoding="UTF-8"?>
<csw:TransactionResponse xmlns:csw="http://www.opengis.net/cat/csw/2.0.2">

<csw:TransactionSummary>
<csw:totalInserted>0</csw:totalInserted>
<csw:totalUpdated>1</csw:totalUpdated>
<csw:totalDeleted>0</csw:totalDeleted>

</csw:TransactionSummary>
</csw:TransactionResponse>

Delete operation example

POST request:

Url:
http://localhost:8080/geonetwork/srv/en/csw

Mime-type:
application/xml

Post data:
<?xml version="1.0" encoding="UTF-8"?>
<csw:Transaction xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" xmlns:ogc="http://www.opengis.net/ogc" version="2.0.2" service="CSW">

<csw:Delete>
<csw:Constraint version="1.1.0">

<ogc:Filter>
<ogc:PropertyIsEqualTo>
<ogc:PropertyName>title</ogc:PropertyName>
<ogc:Literal>africa</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>

</csw:Constraint>
</csw:Delete>

</csw:Transaction>

4.13. CSW service 95

GeoNetwork Developer Manual, Release 2.6.4

Response:

<?xml version="1.0" encoding="UTF-8"?>
<csw:TransactionResponse xmlns:csw="http://www.opengis.net/cat/csw/2.0.2">

<csw:TransactionSummary>
<csw:totalInserted>0</csw:totalInserted>
<csw:totalUpdated>0</csw:totalUpdated>
<csw:totalDeleted>1</csw:totalDeleted>

</csw:TransactionSummary>
</csw:TransactionResponse>

Errors

• User is not authenticated:

<?xml version="1.0" encoding="UTF-8"?>
<ows:ExceptionReport xmlns:ows="http://www.opengis.net/ows" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0.0" xsi:schemaLocation= "http://www.opengis.net/ows http://schemas.opengis.net/ows/1.0.0/owsExceptionReport.xsd">

<ows:Exception exceptionCode="NoApplicableCode">
<ows:ExceptionText>Cannot process transaction: User not authenticated.</ows:ExceptionText>

</ows:Exception>
</ows:ExceptionReport>

4.14 Java development with XML services

In this chapter are shown some examples to access GeoNetwork XML services in Java. Apache http
commons library is used to send the requests and retrieve the results.

4.14.1 Retrieve groups list

This example shows a simple request, without requiring authentication, to retrieve the GeoNetwork
groups.

Source

package org.geonetwork.xmlservices.client;

import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.methods.PostMethod;
import org.apache.commons.httpclient.methods.StringRequestEntity;
import org.jdom.Document;
import org.jdom.Element;

public class GetGroupsClient {

public static void main(String args[]) {

// Create request xml
Element request = new Element("request");

// Create PostMethod specifying service url
String serviceUrl = "http://localhost:8080/geonetwork/srv/en/xml.group.list";
PostMethod post = new PostMethod(serviceUrl);

96 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

try {
String postData = Xml.getString(new Document(request));

// Set post data, mime-type and encoding
post.setRequestEntity(new StringRequestEntity(postData, "application/xml", "UTF8"));

// Send request
HttpClient httpclient = new HttpClient();
int result = httpclient.executeMethod(post);

// Display status code
System.out.println("Response status code: " + result);

// Display response
System.out.println("Response body: ");
System.out.println(post.getResponseBodyAsString());

} catch (Exception ex) {
ex.printStackTrace();

} finally {

**// Release current connection to the connection pool
// once you are done**
post.releaseConnection();

}
}

}

Output

Response status code: 200

Response body:
<?xml version="1.0" encoding="UTF-8"?>

<response>
<record>

<id>2</id>
<name>sample</name>
<description>Demo group</description>
<email>group@mail.net</email>
<referrer />
<label>

<en>Sample group</en>
<fr>Sample group</fr>
<es>Sample group</es>
<de>Beispielgruppe</de>
<nl>Voorbeeldgroep</nl>

</label>
</record>

</response>

4.14. Java development with XML services 97

GeoNetwork Developer Manual, Release 2.6.4

4.14.2 Create a new user (exception management)

This example show a request to create a new user, that requires authentication to complete succesfully.
The request is executed without authentication to capture the exception returned by GeoNetwork.

Source

package org.geonetwork.xmlservices.client;

import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.HttpStatus;
import org.apache.commons.httpclient.methods.PostMethod;
import org.apache.commons.httpclient.methods.StringRequestEntity;
import org.jdom.Document;
import org.jdom.Element;

public class CreateUserClient {
public static void main(String args[]) {

// Create request xml
Element request = new Element("request")
.addContent(new Element("operation").setText("newuser"))
.addContent(new Element("username").setText("samantha"))
.addContent(new Element("password").setText("editor2"))
.addContent(new Element("profile").setText("Editor"))
.addContent(new Element("name").setText("Samantha"))
.addContent(new Element("city").setText("Amsterdam"))
.addContent(new Element("country").setText("Netherlands"))
.addContent(new Element("email").setText("samantha@mail.net"));

// Create PostMethod specifying service url
String serviceUrl = "http://localhost:8080/geonetwork/srv/en/user.update";
PostMethod post = new PostMethod(serviceUrl);

try {
String postData = Xml.getString(new Document(request));

// Set post data, mime-type and encoding
post.setRequestEntity(new StringRequestEntity(postData, "application/xml", "UTF8"));

// Send request
HttpClient httpclient = new HttpClient();
int result = httpclient.executeMethod(post);

// Display status code
System.out.println("Response status code: " + result);

// Display response
System.out.println("Response body: ");
String responseBody = post.getResponseBodyAsString();
System.out.println(responseBody);

if (result != HttpStatus.SC_OK) {

// Process exception
Element response = Xml.loadString(responseBody, false);
System.out.println("Error code: " +

98 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

response.getAttribute("id").getValue());
System.out.println("Error message: " +
response.getChildText("message"));

}

} catch (Exception ex) {
ex.printStackTrace();

} finally {
// Release current connection to the connection pool
// once you are done
post.releaseConnection();

}
}

}

Output

Response status code: 401

Response body:
<?xml version="1.0" encoding="UTF-8"?>
<error id="service-not-allowed">

<message>Service not allowed</message>
<class>ServiceNotAllowedEx</class>
<stack>

<at class="jeeves.server.dispatchers.ServiceManager" file="ServiceManager.java" line="374" method="dispatch" />
<at class="jeeves.server.JeevesEngine" file="JeevesEngine.java" line="621" method="dispatch" />
<at class="jeeves.server.sources.http.JeevesServlet" file="JeevesServlet.java" line="174" method="execute" />
<at class="jeeves.server.sources.http.JeevesServlet" file="JeevesServlet.java" line="99" method="doPost" />
<at class="javax.servlet.http.HttpServlet" file="HttpServlet.java" line="727" method="service" />
<at class="javax.servlet.http.HttpServlet" file="HttpServlet.java" line="820" method="service" />
<at class="org.mortbay.jetty.servlet.ServletHolder" file="ServletHolder.java" line="502" method="handle" />
<at class="org.mortbay.jetty.servlet.ServletHandler" file="ServletHandler.java" line="363" method="handle" />
<at class="org.mortbay.jetty.security.SecurityHandler" file="SecurityHandler.java" line="216" method="handle" />
<at class="org.mortbay.jetty.servlet.SessionHandler" file="SessionHandler.java" line="181" method="handle" />

</stack>
<object>user.update</object>
<request>

<language>en</language>
<service>user.update</service>

</request>
</error>

Error code: service-not-allowed Error message: Service not allowed

4.14.3 Create a new user (sending credentials)

This example show a request to create a new user, that requires authentication to complete succesfully.

In this example httpClient it’s used first to send a login request to GeoNetwork, getting with JSES-
SIONID cookie. Nexts requests send to GeoNetwork using httpClient send the JSESSIONID cookie,
and are managed as authenticated requests.

4.14. Java development with XML services 99

GeoNetwork Developer Manual, Release 2.6.4

Source

package org.geonetwork.xmlservices.client;

import org.apache.commons.httpclient.Credentials;
import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.HttpStatus;
import org.apache.commons.httpclient.UsernamePasswordCredentials;
import org.apache.commons.httpclient.auth.AuthScope;
import org.apache.commons.httpclient.methods.PostMethod;
import org.apache.commons.httpclient.methods.StringRequestEntity;
import org.jdom.Document;
import org.jdom.Element;

public class CreateUserClientAuth {
private HttpClient httpclient;

CreateUserClientAuth() {
httpclient = new HttpClient();

}

/
* Authenticates the user in GeoNetwork and send a request

* that needs authentication to create a new user

*
*/**
public void sendRequest() {

// Authenticate user
if (!login()) System.exit(-1);

// Create request XML
Element request = new Element("request")
.addContent(new Element("operation").setText("newuser"))
.addContent(new Element("username").setText("samantha"))
.addContent(new Element("password").setText("editor2"))
.addContent(new Element("profile").setText("Editor"))
.addContent(new Element("name").setText("Samantha"))
.addContent(new Element("city").setText("Amsterdam"))
.addContent(new Element("country").setText("Netherlands"))
.addContent(new Element("email").setText("samantha@mail.net"));

// Create PostMethod specifying service url
String serviceUrl = "http://localhost:8080/geonetwork/srv/en/user.update";
PostMethod post = new PostMethod(serviceUrl);

try {
String postData = Xml.getString(new Document(request));

// Set post data, mime-type and encoding
post.setRequestEntity(new StringRequestEntity(postData, "application/xml", "UTF8"));

// Send request
**(httpClient has been set in
// login request with JSESSIONID cookie)**
int result = httpclient.executeMethod(post);

// Display status code

100 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

System.out.println("Create user response status code: " + result);

if (result != HttpStatus.SC_OK) {

// Process exception
String responseBody = post.getResponseBodyAsString();
Element response = Xml.loadString(responseBody, false);
System.out.println("Error code: " +
response.getAttribute("id").getValue());
System.out.println("Error message: " +
response.getChildText("message"));

}

} catch (Exception ex) {
ex.printStackTrace();

} finally {

**// Release current connection to the connection pool
// once you are done**
post.releaseConnection();

}
}

/
* Logins a user in GeoNetwork

*
* After login **httpClient** gets with JSSESIONID cookie. Using it

* for nexts requests, these are managed as "authenticated requests"

*
* @return True if login it’s ok, false otherwise
*/**
private boolean login() {

// Create request XML
Element request = new Element("request")
.addContent(new Element("username").setText("admin"))
.addContent(new Element("password").setText("admin"));

// Create PostMethod specifying login service url
String loginUrl =
"http://localhost:8080/geonetwork/srv/en/xml.user.login";
PostMethod post = new PostMethod(loginUrl);

try {
String postData = Xml.getString(new Document(request));

// Set post data, mime-type and encoding
post.setRequestEntity(new StringRequestEntity(postData,
"application/xml", "UTF8"));

// Send login request
int result = httpclient.executeMethod(post);

// Display status code and authentication session cookie
System.out.println("Login response status code: " + result);
System.out.println("Authentication session cookie: " +
httpclient.getState().getCookies()[0]);

return (result == HttpStatus.SC_OK);

4.14. Java development with XML services 101

GeoNetwork Developer Manual, Release 2.6.4

} catch (Exception ex) {
ex.printStackTrace();
return false;

} finally {
// Release current connection to the connection pool
// once you are done
post.releaseConnection();

}

}

public static void main(String args[]) {
CreateUserClientAuth request = new CreateUserClientAuth();

request.sendRequest();
}

}

Output

Login response status code: 200
Authentication session cookie: JSESSIONID=ozj8iyva0agv
Create user response status code: 200

Trying to run again the program, as the user it’s just created we get an exception:

Login response status code: 200
Authentication session cookie: JSESSIONID=1q09kwg0r6fqe
Create user response status code: 500

Error response:

<?xml version="1.0" encoding="UTF-8"?>
<error id="error">

<message>ERROR: duplicate key violates unique constraint "users_username_key"</message>
<class>PSQLException</class>
<stack>

<at class="org.postgresql.core.v3.QueryExecutorImpl" file="QueryExecutorImpl.java" line="1548" method="receiveErrorResponse" />
<at class="org.postgresql.core.v3.QueryExecutorImpl" file="QueryExecutorImpl.java" line="1316" method="processResults" />
<at class="org.postgresql.core.v3.QueryExecutorImpl" file="QueryExecutorImpl.java" line="191" method="execute" />
<at class="org.postgresql.jdbc2.AbstractJdbc2Statement" file="AbstractJdbc2Statement.java" line="452" method="execute" />
<at class="org.postgresql.jdbc2.AbstractJdbc2Statement" file="AbstractJdbc2Statement.java" line="351"
method="executeWithFlags" />
<at class="org.postgresql.jdbc2.AbstractJdbc2Statement" file="AbstractJdbc2Statement.java" line="305"
method="executeUpdate" />
<at class="jeeves.resources.dbms.Dbms" file="Dbms.java" line="261" method="execute" />
<at class="org.fao.geonet.services.user.Update" file="Update.java" line="134" method="exec" />
<at class="jeeves.server.dispatchers.ServiceInfo" file="ServiceInfo.java" line="238" method="execService" />
<at class="jeeves.server.dispatchers.ServiceInfo" file="ServiceInfo.java" line="141" method="execServices" />

</stack>
<request>

<language>en</language>
<service>user.update</service>

</request>
</error>

102 Chapter 4. XML Services

GeoNetwork Developer Manual, Release 2.6.4

Error code: error Error message: ERROR: duplicate key violates unique constraint
“users_username_key”

4.14. Java development with XML services 103

GeoNetwork Developer Manual, Release 2.6.4

104 Chapter 4. XML Services

CHAPTER 5

Settings hierarchy

5.1 Introduction

GeoNetwork stores many options and information inside the Settings table. Information is grouped into
hierarchies where each node has a key/value pair and can have many children. Each key is limited to 32
characters while each value is limited to 250. The 2 top level hierarchies are system and harvesting.

In the following sections, the indentation is used to show hierarchies. Names in bold represent keys
with the value’s datatype in parenthesis. An italic font is used to indicate basic types (string, integer,
boolean) while normal font with a | is used to represent a set of allowed values. Regarding the boolean
type, value can be only true or false. A missing datatype means that the value of the node is not used.
Square brackets indicate cardinality. If they are missing, a cardinality of [1..1] should be considered.

5.2 The system hierarchy

• site: Contains information about the site

– name (string): Name used to present this site to other sites. Used to fill comboboxes or lists.

– organisation (string): Name of the organization/company/institute that is running GeoNet-
work

– siteId (string): A UUID that uniquely identifies the site. It is generated by the installer.

• platform: Contains information about the current version

– version (string): GeoNetwork’s version in the X.Y.Z format

– subVersion (string): A small description about the version, like ’alpha-1’, ’beta’ etc...

• server: Used when it is necessary to build absolute URLs to the GeoNetwork server. This is the
case, for example, when creating links inside a metadata or when providing CSW capabilities.

– host (string): Main HTTP server’s address

– port (integer): Main HTTP server’s port (can be empty)

• Intranet: specify the network of the Intranet

– network (string): Network’s address

105

GeoNetwork Developer Manual, Release 2.6.4

– netmask (string): Network’s netmask

• z3950: A container for Z39.50 server parameters

– enable (boolean): If true, GeoNetwork will start the Z30.50 server

– port (integer): The port opened by GeoNetwork to listen to Z39.50 requests. Usually is
2100.

• proxy: This container specify proxy configuration to use

– use (boolean): If true, GeoNetwork will use the given proxy for outgoing connections

– host (string): Proxy’s host

– port (integer): Proxy’s port

– username (string): Proxy’s credentials.

– password (string): Proxy’s credentials.

• feedback: Feedback is sent with proper web form or when downloading a resource.

– email (string): email address of a GeoNetwork administrator or someone else

– mailServer: This container represents the mail server that will be used to send email

* host (string): Address of the SMTP server to use

* port (string): SMTP port to use

• removedMetadata: This container contains settings about removed metadata.

– dir: This folder will contain removed metadata in MEF format. It gets populated when the
user deletes a metadata using the web interface.

• LDAP: Parameters for LDAP authentication

– use (boolean)

– host (string)

– port (integer)

– defaultProfile (string): Default GeoNetwork’s profile to use when the profile user attribute
does not exist.

– login

* userDN (string)

* password (string)

– distinguishedNames

* base (string)

* users (string)

– userAttribs: A container for user attributes present into the LDAP directory that must be
retrieved and used to create the user in GeoNetwork.

* name (string)

* password (string)

* profile (string)

106 Chapter 5. Settings hierarchy

GeoNetwork Developer Manual, Release 2.6.4

5.3 Harvesting nodes

The second top level hierarchy is harvesting. All nodes added using the web interface are stored here.
Each child has node in its key and its value can be GeoNetwork, WebDAV, CSW or another depending
on the node type.

All harvesting nodes share a common setting structure, which is used by the harvesting engine to retrieve
these common parameters. This imply that any new harvesting type must honour this structure, which
is the following:

• site: A container for site information.

– name (string): Node name as shown in the harvesting list.

– UUID (string): A unique identifier assigned by the system when the harvesting node is
created.

– useAccount (boolean): Indicates if the harvester has to authenticate to access the data.

* username (string):

* password (string):

• options:

– every (integer): Timeout, in minutes, between 2 consecutive harvesting.

– oneRunOnly (boolean): If true, the harvester will harvest one time from this node and then
it will set the status to inactive.

– status (active|inactive): Indicates if the harvesting from this node is stopped (inactive) or if
the harvester is waiting until the timeout comes.

• privileges [0..1]: This is a container for privileges to assign to each imported metadata

– group (integer) [0..n]: Indicate a local group. The node’s value is its local identifier. There
can be several group nodes each with its set of privileges.

* operation (integer) [0..n]: Privilege to assign to the group. The node’s value is the
numeric id of the operation like 0=view, 1=download, 2=edit etc...

• categories [0..1]: This is a container for categories to assign to each imported metadata

– category (integer) [0..n]: Indicate a local category and the node’s value is its local identifier.

• info: Just a container for some information about harvesting from this node.

– lastRun (string): If not empty, tells when the harvester harvested from this node. The value
is the current time in milliseconds since 1 January, 1970.

Privileges and categories nodes can or cannot be present depending on the harvesting type. In the fol-
lowing structures, this common structure is not shown. Only extra information specific to the harvesting
type is described.

5.3.1 Nodes of type GeoNetwork

This is the native harvesting supported by GeoNetwork 2.1 and above.

• site: Contains host and account information

– host (string)

5.3. Harvesting nodes 107

GeoNetwork Developer Manual, Release 2.6.4

– port (integer)

– servlet (string)

• search [0..n]: Contains the search parameters. If this element is missing, an unconstrained search
will be performed.

– freeText (string)

– title (string)

– abstract (string)

– keywords (string)

– digital (boolean)

– hardcopy (boolean)

– source (string)

• groupsCopyPolicy [0..n]: Represents a copy policy for a remote group. It is used to maintain
remote privileges on harvested metadata.

– name (string): Internal name (not localised) of a remote group.

– policy (string): Copy policy. For the group all, policies are: copy, copyToIntranet. For all
other groups, policies are: copy, createAndCopy. The Intranet group is not considered.

5.3.2 Nodes of type GeoNetwork20

This type allows harvesting from older GeoNetwork 2.0.x nodes.

• site: Contains host and account information

– host (string)

– port (integer)

– servlet (string)

• search [0..n]: Contains the search parameters. If this element is missing no harvesting will be
performed but the host’s parameters will be used to connect to the remote node.

– freeText (string)

– title (string)

– abstract (string)

– keywords (string)

– digital (boolean)

– hardcopy (boolean)

– siteId (string)

5.3.3 Nodes of type WebDAV

This harvesting type is capable of connecting to a web server which is WebDAV enabled.

108 Chapter 5. Settings hierarchy

GeoNetwork Developer Manual, Release 2.6.4

• Site: Contains the URL to connect to and account information

– URL (string): URL to connect to. Must be well formed, starting with http://, file://
or a supported protocol.

– Icon (string): This is the icon that will be used as the metadata source’s logo. The image is
taken from the images/harvesting folder and copied to the images/logos folder.

• options

– Recurse (boolean): Indicates if the remote folder must be recursively scanned for metadata.

– Validate (boolean): If set, the harvester will validate the metadata against its schema and the
metadata will be harvested only if it is valid.

5.3.4 Nodes of type CSW

This type of harvesting is capable of querying a Catalogue Services for the Web (CSW) server and
retrieving all found metadata.

• site

– capabUrl (string): URL of the capabilities file that will be used to retrieve the operations
address.

– icon (string): This is the icon that will be used as the metadata source’s logo. The image is
taken from the images/harvesting folder and copied to the images/logos folder.

• search [0..n]: Contains search parameters. If this element is missing, an unconstrained search will
be performed.

– freeText (string)

– title (string)

– abstract (string)

– subject (string)

5.3. Harvesting nodes 109

	Software development
	System Requirements
	Tools
	Check out source code
	Build GeoNetwork
	Creating the installer
	Eclipse setup

	Harvesting
	Structure
	Data storage
	Guidelines

	Metadata Exchange Format v1.1
	Introduction
	File format
	The info.xml file

	XML Services
	Calling specifications
	Login and logout services
	Group services
	User services
	Metadata services
	System configuration
	General services
	File download services
	Harvesting services
	Schema information
	Relations
	MEF services
	CSW service
	Java development with XML services

	Settings hierarchy
	Introduction
	The system hierarchy
	Harvesting nodes

